Алюминиевый солнечный коллектор


Простой термосифонный солнечный коллектор без насоса своими руками

Описанная ниже конструкция — термосифонный солнечный коллектор, основан на медной трубе и алюминиевом оребрении. Медное оребрение имеет немного более эффективную теплоотдачу, но стоимость медных листов увеличивает цену коллектора в 3-4 раза. Пайка ребер к трубам -тоже непростая задача. Производительность способа переноса тепла от алюминиевых пластин медным трубам заключается в обеспечении хорошего теплового контакта. Как это реализуется — читайте ниже. По ссылке доступны тесты производительности данного прототипа.

Какова цель самодельной термосифонной системы:

  • Производительность, близкая к коммерческим коллекторам.
  • Низкая стоимость (до 1/4 от цены за покупную систему).
  • Длительный срок службы.
  • Легкость исполнения своими руками из доступных каждому материалов.

Солнце нагревает воду, снижает ее плотность и вода поднимается в резервуар. Нагретая вода выходит из коллектора, ее постепенно замещает холодная, подающаяся естественной циркуляцией из резервуара в коллектор через нижнее соединение. Насос в данной конструкции не нужен. Контроль осуществляется автоматически, так как движение воды останавливается, как только коллектор остывает ниже температуры накопительного бака. Принцип термосифона подробно рассмотрен в этой статье.

Этот вариант термосифонного коллектора не предусматривает использование при минусовых температурах, поэтому при первых заморозках систему необходимо сливать.

В качестве примера взяты два прототипа коллектора одинаковой конфигурации, поэтому фото могут отличаться в некоторых несущественных деталях.

Термосифонная система своими руками

Из чего собран термосифонный солнечный коллектор:

  • Гофрированный поликарбонатный лист SunTuf.
  • Рама из пиломатериалов.
  • Фанера или ОСБ для основы.
  • Жесткая теплоизоляция (теплоизолятор может быть любым, от этого будут зависеть «слои» подложки — с жесткой изоляцией в данной конструкцией заднюю часть коллектора больше ничем не закрывали).
  • Алюминий листовой для абсорбера 0,5 мм.
  • Трубы медные.
  • Фитинги медные.
  • Термостойкий силикон.
  • Винты, краска, волнистые рейки для крепления поликарбоната (их можно изготовить из досок лобзиком).

Данная конструкция термосифонного солнечного коллектора основывается на алюминиевом абсорбере. Ребра увеличивают площадь передачи тепла от пластины к трубе и имеют паз по форме этой трубы.

2 способа сделать абсорбер медной трубы из алюминия

Использование листового алюминия в связке с медными трубами очень часто используется канадцами, американцами, австралийцами. У нас же это непопулярное решение (насколько мне известно). Кто-то занимается оксидированием меди, кто-то просто красит трубы.

Приспособление для гибки листового алюминия изготавливается из фанеры 19 мм толщиной и длиной около метра, в которой есть канавка квадратной формы 16Х16 мм. Для формирования углубления под трубу взят стальной стержень диаметром 16 мм (труба в большинстве коллекторов берется полдюймовая).

Приспособление для гибки алюминия для абсорберов солнечного коллектора

«Гнездо» для формовки алюминия сделано из двух брусков фанеры 16 мм, так приклеенных и привинченных к основе, чтобы образовать квадратную канавку. Листовой алюминий некоторых брендов уже имеет небольшой сгиб ровно по середине листа, а если его нет — нужно быть более внимательным при гибке.

Метод прессования молотком кажется неубедительным на первый взгляд, но на практике прекрасно работает. Процесс гибки алюминия с помощью прута и кувалды понятен из фото: положите металл на фанеру точно над пазом, установите стержень, придерживайте его и без сверхусилий бейте вертикально поставленным молотком по конструкции. Такой способ не дает ребрам загибаться вверх.

Пресс для листового алюминия

Как только вы «набьете руку», гибка одного абсорбера будет занимать не более 20 секунд.

Не забывайте проверять плотность прилегания абсорбера к трубе.

Фанерку для гибки всегда можно усовершенствовать держателями для стержня, ограничителем по одной стороне для того, чтобы лист алюминия не скользил по фанере.

Не стоит делать слишком длинные ребра, так как медь и алюминий расширяются с разной скоростью и короткие ребра (60-70 см) справятся с этим лучше. Ребра необходимо выровнять, опрессовать.

Существует способ полностью обернуть трубу алюминием. Пошаговые фото этого процесса смотрите ниже.

Этот метод позволяет добиться полного контакта абсорбера с медной трубой, что улучшает производительность коллектора, но и усложняет процесс создания абсорбера.

Конечно, описанные здесь способы не предел фантазии. Во время подготовки статьи мне встречались и высокотехнологичные для домашнего использования решения, такие как эти:

Как выровнять алюминиевые ребра абсорбера

Вероятно, можно придумать множество вариантов, как выровнять абсорбер после гибки. В данном случае автор конструкции соорудил пресс, который вы видите на фото. Ему нужно было обработать много алюминия для теплого пола и этот пресс работал быстрее и аккуратнее способа с молотком.

Пресс продавливает алюминий закрепленным стальным стержнем. Эта конструкция вполне сносно работает благодаря длинным рычагам, увеличивающим массу тела.

Даже если оребрение идеально совпадает с формой трубы, силикон обязательно нужен для оптимизации сцепления между металлами.

Как оптимизировать сцепление между металлами

В канавку наносится тонкий слой термостойкого силикона. Силикон обладает теплопроводностью в 10 раз большей, чем воздух, поэтому даже при очень хорошем сцеплении он не помешает. Помимо теплопроводности, силикон уменьшает риск гальванической коррозии путем герметизации от возможной влаги. Более подробно про улучшение сцепления между абсорбером я расскажу в следующей статье.

Укладка дополнительной полосы алюминия под трубу

В некоторых прототипах коллекторов ставят еще одну пластину алюминия под каждой медной трубой. Это дополнительная зона контакта между медью и абсорбером, помогающая избежать потери тепла на внешнем крае ребра. Про эффективность алюминиевого абсорбера готовлю отдельный материал.

Изготовление труб для коллектора

Размер коллектора должен быть таким, чтобы как можно меньше осталось отходов от резки медной трубы :). На фото размер фанеры 238Х117 см (перевожу дюймы в сантиметры, поэтому цифры выглядят немного странно). Параметры основы напрямую зависят от размера материала, который накроет коллектор (стекло или поликарбонат).

Так будет выглядеть медная решетка. Вода будет поступать в нижнем правом углу, проходить весь путь и выходить в верхнем левом.

Вырезаем трубы нужной длины. После резки необходимо зачистить места среза, особенно с внутренней стороны. На специальном инструменте для резки труб предусмотрено лезвие для этого. На фото очистка переходников и труб от остатков резки.

Примеряем алюминиевые ребра, подгоняем до идеального соприкосновения между отдельными деталями абсорбера. Режем отрезки трубы под соединения. Напоминаю, все замеры должны быть идеальными — расстояние между трубами должно равняться ширине ребер абсорберов.

Первый стояк получает Т-образный фитинг (на прием воды), а последний стояк получает коленчатое соединение. На другом конце коллектора колено идет к первой трубе, а тройник к последней (выход горячей воды). Такая обвязка обеспечивает примерно одинаковую циркуляцию.

Припаиваем все детали решетки.

После того, как решетка остынет, ее нужно будет тщательно отмыть от флюса жидкостью для мытья посуды.

Спаянные трубы должны пройти испытание на герметичность. На фото показан простейший способ, который прекрасно работает. Необходимо закрыть выпускное отверстие в нижнем конце и медленно наполнить сетку водой. Если у вас есть возможность использовать небольшое давление, то это вообще отлично.

Как сделать раму для солнечного коллектора

Рама должна иметь такой размер, чтобы в нее стала фанера с абсорбером. Углы скреплены шурупами и клеем. Рама в данном случае была загрунтована и покрашена эпоксидной краской.

Установка трубной сетки

Прижимаем трубы к фанере, добавляем фитинги к подаче и обратке. В данной конструкции выходы предусмотрены в заднюю часть коллектора. Можно припаять впускной и выпускной клапан сразу.

Прокладываем полосы алюминия под трубы. Выше я уже обращал внимание, зачем это делается. Полоса силикона заполняет пустоты между трубой и пластиной. Далее наносим силикон на всю пластину.

Силикон остается гибким при тех температурах, в которых придется работать коллектору. Это очень хороший способ сохранения и передачи тепла от абсорбера к решетке. В продаже есть термостойкие силиконы с наполнителями, увеличивающими теплопроводность.

Установка абсорберов

Подгонка оребрения

В канавку ребра наносим полоской герметик. Слой должен быть очень тонким. Плотно прибиваем ребра к фанере с помощью степлера скобами из нержавеющей стали. В одном из прототипов используются шурупы.

Установка алюминиевого абсорбера Закрепление оребрения степлером

Покраска абсорбера

На абсорбер необходимо нанести селективное покрытие. В гаражных условиях очень удобно воспользоваться краской для каминов и барбекю, в продаже есть и селективные краски для коллекторов.

Нужно очистить поверхность алюминия и меди от герметика и других загрязнений с помощью ацетона или другого подходящего растворителя. Абсорбер должен быть абсолютно сухим перед покраской.

Устанавливаем термосифонный солнечный коллектор в рамку.

Установка изоляции на солнечный коллектор

В данном случае используется жесткая изоляционная плита. Полистирол брать нежелательно из-за высоких температур. На фото изоляция приклеивается полиуретановой пеной. На плиту обязательно нужно установить груз, так как пена будет пытаться расшириться.

Остекление солнечного коллектора

Вовсе не обязательно использовать поликарбонат, как в данном случае. Но именно гофрированный поликарбонат наиболее популярен в самоделках у американцев. Он обеспечивает высокую теплопередачу, прочный и гибкий, фильтрует ультрафиолет (так утверждает автор прототипа, но встречавшийся мне ПК был УФ-пропускающим). Для коллектора это хорошие показатели.

Подготовка рамы солнечного коллектора к остеклению

Листы поликарбоната в этой конфигурации соединены путем наложения гофра на гофр и склеены прозрачным силиконом.

Устанавливаем опоры для остекления. Здесь используется тонкостенная оцинкованная металлическая трубка кабелепровод. Необходимо просверлить отверстие в раме, как на фото. Проклеить паз. К слову, на фотографиях один из вариантов солнечного коллектора на трубах из сшитого полиэтилена — все делается точно так-же, как и с медью.

На ребро рамы нужно наложить полоску древесины. Высота полоски должна соответствовать высоте «волны» поликарбоната. Уложите лист так, чтобы ребра поликарбоната можно было герметично прикрутить к раме. ПК вверху и внизу устанавливается на специальную волнистую полосу, используйте силикон для герметизации швов.

Закрепляем вертикальный край гофры винтами с шайбами. Нельзя вкручивать винты «под завязку», вся конструкция под действием температуры будет расширяться и могут пойти трещины.

Над листом поликарбоната необходимо установить полосы древесины, которые будут равномерно прижимать его в верхней и нижней части. На фото хорошо видно, о чем я.

Установка термосифонного солнечного коллектора

На фото видны внешние сантехнические детали. Резервуар находится прямо за стеной над коллектором. В холодном климате трубы необходимо теплоизолировать. Гофрированный подвод предусмотрен на случай каких-либо передвижений коллектора. Сливной клапан для сброса воды на зиму.

Бак для коллектора и сантехнические работы

В качестве резервуара для воды используется старый газовый бак. Устанавливать бак необходимо выше коллектора, чтобы работала естественная циркуляция. Если открыть запорные краны, горячая вода будет поступать из резервуара с холодной стороны электрического бака. Холодная вода поступает в коллектор из старого слива газового бака, горячая вода из коллектора выходит в старый выпускной клапан. Выпускной клапан установлен в резервуар и коллектор. Термодатчик так же установлен на бак и на солнечную панель.

На фото бак для сбора горячей воды из коллектора. Солнечная панель находится за стеной, на выходе двух труб.

На фотографии новый электрический нагреватель для резервного подогрева. Горячая вода из коллектора поступает во входное отверстие для холодной воды в этом баке.

Существуют разные варианты резервуаров для солнечного коллектора, например такой.

Замеры температуры

При температуре около 60 градусов вода поступает в резервуар. Бак прекрасно держит температуру всю ночь, электрический нагреватель не включали. Воду из коллектора используют на стирку, душ и мытье посуды. За бортом температура воздуха была не выше 30 градусов (май 2010 года). Испытания производительности в деталях в следующей статье.

Автор прототипа спустя год пользования панелью отметил, что никаких проблем не возникало.

Вариант крепления системы:

Подобрал самые просматриваемые видео по похожим прототипам:

ehome.ironws.com

Воздушный солнечный коллектор оцинковка или алюминий – Сообщества › DRIVE2 На Даче › Блог › Солнечный воздушный коллектор для отопления дома, дачи, гаража…

06.01.2018 alexxlab Post in Советы мастера

Использовать неисчерпаемую и бесплатную солнечную энергию человечество начало давно. Для ее сбора существуют специальные устройства – солнечные коллекторы. С каждым годом их конструкция становится все более совершенной, но высокие цены на них пока не позволяют использовать их широко и повсюду. Поэтому люди, обладающие пытливым умом и умелыми руками, пытаются сделать солнечные коллекторы самостоятельно. И своими знаниями они готовы поделиться. В данной статье предлагается узнать, как сделать солнечный воздушный коллектор своими руками.

Солнечный воздушный коллектор своими руками

Содержание статьи

Что такое солнечный коллектор

Задача солнечного коллектора – собрать тепловую энергию солнечного излучения и передать ее какому-либо веществу, которое далее передаст ее «адресату». Это вещество называется теплоносителем и в качестве которых могут выступать либо жидкости (чаще всего это вода), либо газы (почти всегда это воздух).

Вода является более эффективным теплоносителем, так как ее теплоемкость гораздо выше, чем воздуха, но ее применение связано с определенными трудностями: сброс излишнего тепла летом или защита от замерзания зимой. Воздух не сможет передать такое количество энергии, зато конструкция воздушных коллекторов гораздо проще, они гораздо надежнее и безопасней. Да и сделать солнечный воздушный коллектор своими руками гораздо проще, чем водяной. Кстати, именно воздух является первым теплоносителем, который стал применять человек. Какие преимущества есть у воздуха, как у теплоносителя:

  • Воздух не подвержен замерзанию и закипанию.
  • Воздух не обладает токсичностью.
  • Воздух не надо наделять какими-то особыми качествами (в водных системах добавляют антифризы), он всегда доступен.

Воздушные солнечные коллекторы широко применяются в системах воздушного отопления как жилых зданий, так и подвалов, гаражей, хранилищ. В каких именно странах воздушные гелиоустановки применяются наиболее широко, очень красноречиво свидетельствует диаграмма.

Использование воздушных солнечных коллекторов в различных странах мира

Видно, что наиболее экономически развитые страны нисколько не пренебрегают возможностями Солнца по нагреву воздуха. А мы, увы, пока входим в число многих 4,3% прочих.

Устройство и принцип работы воздушного солнечного коллектора

Солнечный воздушный коллектор состоит из нескольких основных частей:

Схема работы воздушного солнечного коллектора

  • Вся конструкция коллектора помещена в прочный и герметичный корпус, который обязательно снабжен тепловым изолятором. Тепло, попавшее внутрь коллектора не должно «утекать» наружу.
  • Главная деталь любого коллектора – это солнцеприемная панель, которую еще называют поглотителем или абсорбером. Задача этой панели принять солнечную энергию, а затем передать ее воздуху, поэтому она должна быть изготовлена из материала с наибольшей теплопроводностью. Такими свойствами из доступных в быту являются медь и алюминий, реже сталь. Для лучшей теплоотдачи нижнюю часть абсорбера делают как можно большей площади, поэтому могут применяться ребра, волнистая поверхность, перфорация и другие способы. Для лучшего поглощения солнечной энергии приемная часть абсорбера окрашивается в темный матовый цвет.
  • Верхняя часть коллектора герметично закрывается прозрачной изоляцией в качестве которой может применяться закаленное стекло или оргстекло, или поликарбонатное стекло.

Солнечный коллектор ориентируют на юг и придают поверхности такой наклон, чтобы максимальное количество солнечной энергии попадало на поверхность. Как говорят специалисты – для максимальной инсоляции. Холодный наружный воздух естественно или принудительно попадает в приемную часть, проходит через ребра абсорбера и выходит с другой части, снабженную фланцем для стыковки с воздуховодом, ведущим внутрь отапливаемого помещения. Стоит отметить, что вариантов конструкций солнечных коллекторов существует масса и вышеописанная  показана только для примера.

Воздушное отопление при помощи солнечных коллекторов не может в нашей климатической зоне полностью заменить основное отопление, но оно будет очень хорошим подспорьем даже в морозные зимние солнечные дни.

Солнечный воздушный коллектор своими руками
Определение места установки и доступной площади

Прежде всего, надо определиться с местом установки солнечного воздушного коллектора, так как это сильно может повлиять на его производительность. При этом следует учесть несколько факторов:

  • Воздушный солнечный коллектор следует располагать как можно ближе к тому месту, куда будет поступать подогретый воздух, так как потери в воздуховодах могут стать такими, что применение коллектора окажется нецелесообразным.
  • Коллектор следует располагать на южной стороне дома или другого строения и по возможности под определенным наклоном, обеспечивающим максимальную инсоляцию. Если это недоступно, то надо стараться установить как можно ближе к южной стороне. Зависимость инсоляции от азимута и угла установки показана на диаграмме.

Как влияет ориентация солнечного коллектора на инсоляцию

  • Окружающие предметы, здания строения и растения не должны мешать естественному освещению поверхности коллектора.

В выбранном месте, отвечающим всем условиям, следует посмотреть какой площади солнечный коллектор можно разместить. Очевидно, что чем больше будет площадь коллектора – тем он будет производительней.

Выбор конструкции абсорбера коллектора

Абсорбер (поглотитель) – важнейшая часть любого солнечного коллектора и от его конструкции во многом будет зависеть производительность. У заводских моделей применяются детали из специальных сплавов, имеющих особое высокоселективное покрытие, но это в основном и определяет высокую цену. Наша же задача – найти такой материал, который доступен и, тем не менее, будет хорошо справляться со своей функцией – улавливать солнечное тепло и передавать его воздуху.

И таким доступным материалом является обычная алюминиевая банка из-под Кока-Колы, пива или других напитков. Как собрать нужное количество пустой тары мы описывать не будем, а лучше сосредоточимся на тех замечательных свойствах, которые позволяют использовать алюминиевые банки в качестве абсорбера:

Алюминиевая банка для напитков — идеальный материал для абсорбера коллектора

  • Во-первых, банки изготовлены из алюминия (очень редко встречаются стальные), а он имеет очень высокую теплопроводность.
  • Во-вторых, все банки из-под любых напитков имеют одинаковые размеры: нижний диаметр 66 мм, верхний диаметр 59 мм, высота у банки 0,5 л – 168 мм.
  • В-третьих, банки сделаны таким образом, чтобы в упаковке они размещались друг над другом, то есть они замечательно стыкуются.
  • И, наконец, тонкий алюминий, из которого сделаны банки, легко обрабатывается доступным инструментом.

По мере накопления нужного количества алюминиевых банок их надо тщательно отмывать с моющим средством и просушивать. Иначе в дальнейшем они будут источать неприятный запах, с которым будет справиться сложнее.

Изготовление корпуса коллектора и его теплоизоляция

В зависимости от доступной площади размещения коллектора рассчитываются его габаритные размеры. В данной статье предлагается сделать солнечный воздушный коллектор размером 8 на 8 алюминиевых банок 0,5 л, что по габаритным размерам составит примерно 1400*670 мм. Одного листа фанеры толщиной 21 мм стандартного размера 1525*1525 мм хватит на изготовление всего солнечного коллектора, а толщина фанеры обеспечит необходимую прочность и жесткость конструкции.

Для изготовления корпуса необходимо:

Тщательно разметить лист фанеры. Для коллектора понадобится:

  • Задняя стенка размером 1400*670 мм.
  • Две боковые стенки 1400*116 мм.
  • Две торцевые стенки 630*116 мм.
  • Две направляющие для банок 630*116 мм.

При разметке стоит учесть то, что для дальнейшей обработки краев деталей надо давать припуск по 3—5 мм с каждой стороны. Чтобы нарезка происходила без сбоев лучше линии прочерчивать ярким маркером.

Резать фанеру лучше всего дисковой пилой, причем чем меньше будут зубья у диска – тем лучше. Для более ровного реза можно воспользоваться направляющей, в качестве которой можно использовать лист ДСП с заводской кромкой. Направляющую можно притянуть к листу фанеры струбцинами.

Для ровного реза кромки фанеры лучше всего подходит дисковая пила совместно с направляющей

Если рез будет идти поперек волокон, то лучше предварительно острым ножом по металлической линейке прорезать верхний слой, так меньше будет сколов. После раскроя листа на детали если кромки неровные – их можно обработать фрезерной машиной по шаблону до идеально ровных и перпендикулярных.

Пришло время собирать каркас. Для этого надо:

  • К задней стенке коллектора прикрепить две боковые стенки. Крепить можно мебельными шурупами 6,3*50 мм – их еще называют конфирматами. Только перед этим обязательно надо предварительно пройтись сверлом диаметром 4 мм. Для крепления можно использовать и обычные шурупы, и различные уголки. Коллектор должен иметь герметичный корпус, поэтому целесообразно промазывать скрепляемые поверхности силиконовым герметиком.

Мебельные шурупы-конфирматы вполне подходят для соединения деталей из фанеры толщиной 21 мм

  • К задней стенке, а затем и к боковым крепятся торцевые стенки. После этого проверяется правильность сборки и размеры.

Задние и боковые стенки коллектора необходимо обязательно утеплить и для этого как нельзя лучше подходит экструдированный пенополистирол (ЭППС) толщиной 2 см. Перед тем как приклеивать утеплитель к стенкам, необходимо обработать фанеру антисептическим средством или просто покрасить, так как в этих местах может конденсироваться влага.

Плиты из экструдированного пенополистирола отлично подходят для теплоизоляции солнечного коллектора

Листы ЭППС можно приклеить к поверхности фанеры монтажной пеной, акриловыми «жидкими гвоздями», клеем «Мастер», клеем «Момент», — в любом случае он будет надежно держаться. Главное, чтобы в описании клея пенопласт был указан в качестве одной из склеиваемых поверхностей. Во время клейки утеплителя надо добиться того, чтобы все стыки были полностью закрыты. При необходимости в дальнейшем они могут «задуваться» монтажной пеной.

После того как вся внутренняя поверхность коллектора будет утеплена, ее можно обклеить отражающей теплоизоляцией, которая представляет собой основу из стеклоткани или вспененного полиэтилена и алюминиевую фольгу. Очень часто эти материалы имеют клеящую основу, что очень удобно, а если нет, то можно приклеить на любой подходящий для этого состав. Стыки обязательно надо проклеить алюминиевым скотчем.

Стыки теплоотражающего слоя должны скрепляться алюминиевым скотчем

Изготовление направляющих для абсорбера

Чтобы колонны из алюминиевых банок точно держали свою геометрию, необходимо изготовить для них направляющие. Для этого ранее были вырезаны два куска фанеры 630*116 мм, которые надо разметить и высверлить следующим образом:

  • От верхней части отступить 53 мм и прочертить линию параллельную длинной стороне.
  • Полученную линию разделить на 9 равных отрезков, то есть по 70 мм, поставить метки. Они будут центрами отверстий.
  • Сверлом для дерева коронка-чашка диаметром 57 мм надо высверлить отверстия в фанере. Но перед этим лучше померить в нижней части банки диаметр опорного кольца устойчивости, так как размеры могут варьироваться. При необходимости выбрать другое сверло. Банка должна входить в отверстие достаточно плотно. При работе на сверло сильно не нажимают и периодически дают ему отдохнуть.

Сверло коронка-чашка просто незаменимо для отверстий большого диаметра в фанере

  • Аналогично делается разметка на верхней направляющей. Диаметр головной части банки немного больше (57,4), чем заднего опорного кольца, поэтому перед высверливанием лучше померить его штангенциркулем и подобрать соответствующую коронку-чашку, а после примерить верх банки.
Изготовление абсорберов

Для подготовки банок к монтажу следует выполнить ряд операций:

  • Все банки надо проверить постоянным магнитом. Очень редко, но встречаются банки из стали, которые надо отсортировать.
  • В верхней части банки ножницами по металлу делаются надрезы от отверстия к краям, а затем эти «язычки» заправляются внутрь. Работать следует в перчатках, чтобы избежать порезов от острых краев алюминия. Направить острые язычки внутрь банки и выровнять края отверстия поможет кусок полимерной трубы, зажатой в тисках. Подобным образом обрабатываем все 64 банки.

Ножницами по металлу лучше всего раскрывать верхнюю часть банки

  • Настало время заняться нижней частью. Для этого коническим сверлом по металлу в донышке просверливаются три отверстия диаметром примерно 20 мм расположенные под 120° друг к другу. Для того чтобы не помять банку, ее надо поместить в упругую оправку (например, кусок трубной изоляции) и не сжимать сильно руками. Так обрабатываются все банки.

Коническое сверло вырезает очень ровные отверстия в донышке банки

  • Для склеивания банок лучше всего воспользоваться высокотемпературным клеем-герметиком High Heat Mortar на основе силикатного цемента. Его применяют для герметизации печей, каминов, дымоходов. Возможно, его огнестойкость для коллектора будет избыточной, но «запас карман не тянет».

Такой герметик для печей и каминов отлично подходит и для изготовления абсорбера

  • Для того чтобы банки во время склеивания выдерживали линию, надо изготовить шаблон из двух ровных досок, скрепленных между собой под углом в 90°. Для прилегания банок к поверхности шаблон ставят наклонно и опирают о стену.

Шаблон очень помогает в сборке

  • Перед склеиванием банки обезжиривают любым доступным растворителем (ацетон, № 646, 647). Эту работу лучше делать на улице.
  • Перед началом следующего этапа на руки надо надеть резиновые перчатки, а рядом иметь емкость с водой. Склеиваемые поверхности увлажняются, из пистолета выдавливается ровной «колбаской» клей-герметик на нижнюю часть банки, а затем она стыкуется с верхней частью банки, находящейся ниже.

Клей-герметик наносится на верхнюю часть банки

  • Увлажненным пальцем в перчатке разравнивается выдавившийся клей так, чтобы весь стык и поверхность рядом с ним была укрыта клеем. Затем все эти операции повторяются для всех банок одного столбика (8 штук). После этого все банки ставятся в шаблон, выравниваются и прижимаются сверху грузом.
  • После того как клей затвердеет, столбик снимают и аккуратно укладывают на горизонтальную поверхность. Подобным образом собирают другие столбики из банок.

Заготовки для абсорбера окончательно высыхают на горизонтальной поверхности

  • Пока полностью высыхают заготовки можно окрасить заднюю стенку солнечного коллектора и направляющие для банок в черный матовый цвет. В хороших автомагазинах всегда можно найти такую краску, предназначенную для глушителей или тормозных барабанов.

Такую краску можно всегда найти в хорошем автомагазине

  • Боковые стенки коллектора окрашивать не надо, поэтому их надо закрыть газетами, прикрепленными малярным скотчем. После обезжиривания поверхностей краску наносят в два слоя.
Сборка воздушного солнечного коллектора
  • Пора начать сборку батареи абсорбера. Для этого каждый столбик укладывается в соответствующую направляющую вначале снизу, а затем сверху. Перед стыковкой банки промазываются герметиком, а потом увлажненным пальцем герметик разравнивается. На этом этапе надо быть особенно внимательным. Собирать лучше на горизонтальной поверхности. После сборки и проверки всех соединений можно аккуратно стянуть две направляющие резиновым жгутом и оставить высыхать.
  • Когда вся конструкция поглотителя высохнет ее можно аккуратно поднять и поместить поверх короба так, чтобы расстояния сверху и снизу были одинаковыми. После этого делается разметка положения направляющих, ведь для их монтажа в короб придется вырезать канавку в утеплителе так, чтобы они плотно сели и уперлись в фанерный лист задней стенки. После монтажа направляющие планки крепятся с торцов через боковины мебельными шурупами-конфирматами. После этого все стыки заделываются герметиком.

Поглотитель (абсорбер) смонтирован на свое штатное место

  • Для входа и выхода воздуха сразу надо предусмотреть отверстия, которые лучше всего сделать в задней стенке. Лучше всего для этого воспользоваться готовыми решениями в системе пластиковых вентиляционных каналов, а именно пластины настенные с фланцем, которые можно легко вмонтировать в заднюю стенку в местах входа и выхода не занятых адсорбером. Для этого в фанерном листе и утеплителе прорезается прямоугольное отверстие по размерам пластины, а затем она крепится к стенке на шурупы через слой герметика.

Настенные пластины с фланцем из системы вентиляционных каналов ПВХ отлично подходят для воздушного солнечного коллектора

  • Если возникнет необходимость перейти на круглый воздуховод, вмонтировать канальный вентилятор, сделать поворот и т. д., то в ассортименте производителей есть любые трубы и фасонные части, которые следует подгонять уже по месту.
  • Верхнюю и нижнюю лицевую часть солнечного коллектора в местах входа и выхода воздуховодов необходимо облицевать. Для этого очень хорошо подходит вагонка, но ее сначала надо обрезать точно по размеру, а потом подрезать утеплитель на боковых и торцевых стенках коллектора ровно на толщину вагонки. После этого она приклеивается на герметик, им же обрабатываются все стыки.

Места входа и выхода удобно облицевать кусками пластиковой вагонки

  • Для покраски коллектор ставится на упоры в положение близкое к вертикальному. Перед окраской поверхности обезжириваются и высушиваются. Краска наносится в несколько слоев до тех пор, пока она не укроет всю видимую поверхность. Каждый слой наносится так, чтобы не образовывались потеки. Поверхность должна получиться насыщенно-черной и матовой.

Покраска коллектора

  • После высыхания краски самое время смонтировать переднее стекло. Для этих целей лучше всего подойдёт акриловое оргстекло или поликарбонатное стекло. Вначале лист стекла прикладывается к поверхности, намечаются его размеры, а после уже он вырезается. Края сразу надо обработать наждачной бумагой и подогнать точно по размеру. Перед монтажом его надо тщательно очистить, особенно нижнюю поверхность и поместить в отсек с адсорбером несколько пакетиков с силикагелем. Он предотвратит появление конденсата на внутренней поверхности стекла.
  • Перед тем как крепить стекло, надо все примыкающие к нему части: периметр короба и направляющие обработать герметиком. Причем необязательно герметик наносить на всю поверхность, достаточно только на торцы фанерных листов. Крепить лучше всего шурупами с пресс-шайбой, предварительно высверлив перед этим отверстия. Желательно еще и прикрыть кромку стекла специальным угловым мебельным профилем.

Для облицовки краев отлично подходит угловой мебельный профиль

  • Для крепления воздушного солнечного коллектора, к нему можно прикрутить кронштейны на заднюю стенку. На этом сборка самого коллектора закончена.
Подключение солнечного воздушного коллектора

Воздушный солнечный коллектор может как интегрироваться в существующую систему вентиляции, так и работать совершенно отдельно. Даже при отсутствии принудительной вентиляции неумолимые физические законы все равно будут «продвигать» нагретый воздух через коллектор, но процесс этот будет идти довольно вяло, поэтому желателен вентилятор с производительностью не менее 150 кубических метров в час.

Применение вентилятора обнажает два важных вопроса:

  1. Где вентилятор ставить: на входе или выходе коллектора? Если коллектор поднимет температуру на выходе до 60—70 °C (а такое вполне возможно), то вентилятор, стоящий там долго не протянет. С другой стороны – вентилятор, стоящий на улице подвергается атмосферным воздействиям и им сложнее управлять. В большинстве случаев его все-таки ставят внутри помещения, а в жаркие дни, когда воздух и так нагрет – вентилятор просто не включают либо подключают его через тепловое реле.

Чаще всего вентилятор монтируют внутри помещения

  1. Применение вентилятора заставляет сомневаться некоторых скептиков в целесообразности воздушного отопления. Не проще ли электроэнергию, потраченную на вращение двигателя вентилятора, направить на подогрев помещения? Но практика показывает, что вышеописанная конструкция коллектора все равно эффективна и выгодна. Разница температур наружно воздуха и на выходе из коллектора может достигать 35 °C.

При эксплуатации воздушного коллектора возникает еще один резонный вопрос: в ночное время, когда инсоляции коллектора нет, даже при неработающем вентиляторе холодный воздух будет проникать в помещение. Решение этого вопроса довольно простое. Среди комплектующих для вентиляционных систем можно найти специальные обратные клапаны, которые открываются только под напором воздушного потока. При неработающем вентиляторе клапан будет закрыт. Важно только правильно его установить, чтобы он не перекрывал воздуховод. Существуют и модели вентиляторов со встроенным клапаном, на которые следует обратить внимание.

Обратный клапан исключит несанкционированный доступ в помещение холодного воздуха ночью

Для быстрого прогрева теплым воздухом можно продумать систему рециркуляции, когда воздух из помещения проходит через коллектор и возвращается в то же помещение. В этом случае оправдано ставить вентилятор, который будет нагнетать воздух в коллектор, а не создавать в нем разрежение. Недостатком рециркуляции является отсутствие притока свежего воздуха.

Эксплуатация и уход за солнечным воздушным коллектором

Чтобы коллектор служил долго и безотказно необходимо соблюдать два простых правила:

  • Периодически надо очищать и промывать лицевое стекло солнечного коллектора.
  • В жаркие летние дни, когда нет надобности в подогреве воздуха, лучше накрыть коллектор плотной светлой тканью во избежание перегрева поверхности абсорбера.
  • Чтобы вентилятор не работал вхолостую, периодически стоит проверять плотность соединений воздуховодов и их целостность.
Заключение

Подводя итоги статьи, стоит обратить внимание на несколько пунктов:

  • Предложенная в этой статье модель солнечного воздушного коллектора доказала на практике свою эффективность и успешно эксплуатируется во всем мире.
  • По желанию можно изготовить более мощный солнечный коллектор или соединить их несколько последовательно.
  • Воздушные солнечные коллекторы можно использовать периодически. Например, для подогрева воздуха в теплицах ранней весной или для сушки сельскохозяйственной продукции осенью.
Видео: Как сделать воздушный солнечный коллектор (англ)

Видео: Слайд-шоу об изготовлении солнечного коллектора из алюминиевых банок

stroyday.ru

Воздушный солнечный коллектор

Привычные источники тепловой энергии постепенно истощаются, попутно загрязняя окружающую среду при горении. Поэтому человечество много внимания уделяет возобновляемой солнечной энергии. Естественно, полноценные, автоматизированные системы на базе гелиоустановок – удовольствие не дешевое, но простой воздушный солнечный коллектор для дачи или подсобного хозяйства вполне можно соорудить самому. О том, как он работает, из чего состоит, что нужно для его сборки, поговорим далее.

Как это работает

Выйдя летним знойным днем на улицу можно на личном примере убедиться, что солнечные лучи не только освещают все вокруг, но также обладает приличным запасом тепла, нагревая окружающий воздух. В отличие от традиционных источников (газа, угля, древесины), эта энергия неограниченная – нужно просто взять да воспользоваться ею. Для этого придется задействовать элементы разных гелиоустановок, например, воздушный или вакуумный коллектор. Но, как уже оговаривалось выше, подобные серийно производимые системы имеют сложную конструкцию и достаточно высокую цену, чтобы претендовать на массовое использование.

Если анализировать их на примере систем отопления или горячего водоснабжения, то нужно признать, что панельный или вакуумный солнечный коллектор – это такой же теплообменник, как обобщенно бытовой котел (газовый, мазутный, угольный). То есть его конструкция предусматривает возможность циркуляции теплоносителя (воды, воздуха). Последний греется за счет поглощенного внешним селективным покрытием (поверхность адсорбера) видимого/инфракрасного излучения. В серийных образцах воздушного или водяного коллектора для этого используется напыление из никеля или оксида титана черного цвета. Он впитывает весь спектр солнечного света – все семь цветов радуги, каждый из которых имеет запас внутренней энергии. То есть, главной задачей солнечной установки в целом, а коллектора в частности, является максимальное поглощение лучей видимого спектра и превращение их в тепло, которое затем передается циркулирующему в системе/корпусе теплоносителю.

Конструкция и принцип действия воздушного аппарата довольно просты: попадая внутрь солнечного коллектора, воздух постепенно нагревается под действием солнечных лучей, становится легче и поднимается вверх. Сама циркуляция в корпусе аппарата может быть организована по естественному и принудительному пути. В первом случае горячий воздух, отдав тепло по назначению, остынет и опустится вниз, выталкивая более легкий греющийся вверх. Для принудительной циркуляции нужно задействовать вентиляционное оборудование солнечного теплообменника.

Вода или воздух

Большая стоимость солнечного коллектора для традиционных водяных систем отопления связана косвенно со свойствами используемого теплоносителя. Вода обладает высокой теплоемкостью, то есть при охлаждении отдает намного больше тепла окружающему пространству, нежели воздух. Но ее функционирование связано с рядом проблем, которые следует учитывать в процессе эксплуатации системы с солнечным коллектором:

  • Как и любая жидкость, вода практически не сжимается, но при этом расширяется с ростом температуры, а значит, нужно контролировать давление, особенно в закрытых системах;
  • Вода меняет свое агрегатное состояние, то есть зимой нужно следить, чтобы она не замерзла, разрушив корпус, трубопроводы, арматуру;
  • В ней содержится кислород, вызывающий коррозию труб, а значит, придется позаботиться о дополнительной защите.

Теплоемкость воздуха в 4 раза ниже, нежели у воды. Расчеты показывают, что при одном и том же объеме, воздушный коллектор выделяет в окружающую среду до 8 ккал тепла, по сравнению с 300 ккал у водяного. Но это также значит, что для нагрева кубометра воздуха нужно вчетверо меньше тепла. Газообразная среда обладает прекрасной подвижностью, позволяя наладить естественную циркуляцию в корпусе аппарата и системе, она не токсична, не может замерзнуть или закипеть и, что главное, воздуха много вокруг. Для его применения в системах отопления не требуется масса специальных инженерных решений.

Из этого можно заключить, что воздушный коллектор имеет более простую конструкцию, порядок эксплуатации. Он не так прихотлив в плане эксплуатации. Кроме того, его легко изготовить своими руками.

Конструктивные особенности

Естественно, существует масса технических решений, но обобщенно устройство, конструкцию, схему действия воздушного солнечного коллектора можно изобразить следующим образом:

Из иллюстрации следует, что основными его частями являются:

  • Герметичный корпус. Служит для удобства монтажа системы и размещения основных действующих компонентов солнечного воздушного коллектора;
  • Адсорбер/поглотитель. Обычно это оребренная панель, располагающаяся внутри корпуса. Главной ее задачей является поглощение солнечных лучей с последующей теплоотдачей воздуху, который циркулирует в коллекторе. Для этого внешняя сторона адсорбера должна быть черного цвета с матовой структурой (в этом случае отражающая способность будет ниже). Материалом служит обычно алюминий или медь, обладающие высокой теплопроводностью. Ребра главным образом используются в конструкции для увеличения площади теплоотдачи, обеспечения требуемого режима движения воздушного потока внутри корпуса;
  • Внешняя изоляция. Это прозрачный материал (закаленное стекло), главной задачей которого является защита адсорбера солнечного воздушного коллектора от механических повреждений и обеспечение максимальной пропускной способности для лучей;
  • Тепловая изоляция. Слой материала, расположенный между адсорбером и стенкой корпуса. Устраняет теплопотери при циркуляции потока воздуха в окружающую среду.

При установке, воздушный коллектор направляют на юг, под наклоном к горизонту. Так делают, чтобы обеспечить максимальную нагрузку поверхности поглотителя в течение дня и сезона. Влияние ориентации места установки в пространстве на степень инсоляции (продолжительность и площадь падения солнечных лучей) можно оценить на следующей иллюстрации.

Круговая диаграмма слева показывает степень/интенсивность потока солнечных лучей, а макет справа – эффективность воздушных коллекторов в зависимости от ориентации стен относительно сторон света.

Также следует учитывать, что вся конструкция в корпусе должна быть расположена максимально близко к объекту обогрева, иначе теплопотери в воздушной магистрали системы сведут на нет весь эффект.

Нагрев воздуха за счет пивных банок

Когда стоит задача спроектировать и собрать воздушный солнечный коллектор своими руками, первое, что принимается во внимание – максимальная простота итоговой конструкции. Использование подручных материалов ускорит процесс сборки и удешевит его, но не следует пренебрегать их свойствами.

Выше уже упоминалось, что лучшим вариантом для адсорбера воздушного солнечного агрегата является медь или алюминий, ввиду их высокой теплоемкости, но в розничной сети такой листовой металл имеет высокую стоимость. Заменить его в конструкции можно, как оказывается, простой банкой из-под пива или Кока-Колы – кто сказал, что адсорбер солнечного коллектора с воздушной циркуляцией должен быть плоским. Для их изготовления используют марганцево-алюминиевый сплав, а все размеры стандартизированные и одинаковые.

Кроме самих банок, придется изготовить корпус воздушного солнечного коллектора, для чего целесообразно использовать листовую фанеру или ДСП. Для обеспечения достаточной жесткости и прочности толщина плит солнечного теплообменника должна быть примерно 16-20 мм. Для отрезания деталей в размер нужно использовать дисковую пилу вместе с шаблоном – так поверхность реза досок получится более ровной.

Важно! При разметке нужно оставлять припуск на отрезку и будущую обработку порядка 3-5 мм на сторону.

Между собой доски корпуса воздушного коллектора крепятся шурупами или конфирматами с обязательной прослойкой герметика. Если используется фанера, то нужно всю конструкцию обработать защитным лаком или пропиткой.

Внутренние стенки корпуса воздушного солнечного теплообменника утепляют. Проще всего для этих целей использовать плиточный пенополистирол (ППС, ЭППС), который садится на любой клеящий состав. Поверх них укладывается рулонная алюминиевая фольга, как отражающий слой. Ее стыки проклеиваются алюминизированным скотчем.

Банки крепятся между собой встык – дно вставляется в горлышко, которое предварительно подрезается ножницами по металлу и вдавливается внутрь корпуса. В дне банки проделывается несколько отверстий сверлом для организации циркуляции воздуха, а при соединении стыки обязательно обрабатываются герметиком. Чтобы собранные колонны (8 штук по 8 банок) надежно располагались в деревянном корпусе, для них следует изготовить направляющие – трубные решетки, отверстия под которые проделываются корончатыми сверлами.

Когда конструкция воздушного коллектора готова, следует провести ее окрашивание. Для этого можно использовать автомобильную матовую (это важно!) краску в баллончиках. С внешней стороны банки закрываются каленым или оргстеклом. Оно обеспечивает высокую степень прохождения лучей и защиту для воздуховодов внутри корпуса.

На задней стенке предварительно проделываются отверстия для обеспечения циркуляции воздуха. Для придания более эстетичного внешнего вида, готовую конструкцию можно облагородить, для чего использовать облицовку из вагонки или мебельных профилей.

Перед началом эксплуатации также придется продумать схему работы воздушного коллектора. Возможно, будет задействована естественная циркуляция или придется устанавливать вентилятор, чтобы гонять воздух принудительно.

Металлический лист в помощь

Еще одним простым вариантом установки для подогрева воздуха является коллектор, в котором роль поглотителя играет обычный профнастил. Это ребристый, волнообразный лист, который также, как и банки в прошлом примере помещается в деревянный корпус. Под ним также укладывается слой изоляции, например, минеральной ваты. С внешней стороны крепится прозрачное стекло. Поверхность листа также придется покрыть термостойкой, матовой и обязательно черной краской. Достоинством такого воздушного коллектора является отсутствие необходимости дополнительного оребривания. Кроме того, здесь не нужно использовать в качестве материала дорогостоящие алюминий или медь. Аналогично баночному варианту используются режимы циркуляции – естественной или принудительной.

Оба упомянутых выше варианта воздушных коллекторов при правильной эксплуатации позволяют повысить температуру в отапливаемом помещении до 20…30°С по сравнению с окружающей средой. Кроме того, несомненным преимуществом является постоянное поступление свежего воздуха внутрь, улучшение микроклимата.

Важно! Обе конструкции не являются аккумулирующими, то есть в дневное время солнечные лучи будут циркулирующий воздух греть, а в темное время суток, наоборот, охлаждать. Следовательно, проток на ночь придется прикрывать.

bouw.ru

Сообщества › DRIVE2 На Даче › Блог › Солнечный воздушный коллектор для отопления дома, дачи, гаража…

Год назад я попал на форумхаус и увидел там солнечные коллекторы для нагрева воды. Идея замечательная, но имеет некоторые недостатки, а именно зимний период когда трубы с водой может разорвать от расширения. И тут пришла мысля нагревать воздух, а как позже выяснилось и не одному мне))) идея весьма проста и позволяет нагревать воздух в здании не затрачивая киловаттов на электроприборы, газ и дрова! Делается коллектор очень просто и стоит дешевле и окупается почти моментально)))! Солнечную энергию можно запасать. Запасать на вечер, на сутки и даже на недели! И для этого нужен теплоаккумулятор. В качестве наполнителя аккума могут послужить речная галька или полторахи с водой (этим мообще ничего не страшно, да и теплоёмкость в разы выше).Вот мой первый серьёзный солнечный воздушный коллектор. Это деревянный утеплённый фольгированным изолоном короб с покрашенным в чёрный мат абсорбером из куска профнастила. Я не особо поверил рассказам на форуме и решил всё опробовать сам… Нашёл кусок грязного профнастила и отмыл его. Не смотря на яркое солнце оцинкованный профнастил не высыхал тк был сильный минусовой ветер… Через 15 минут он всё-же просох… В имевшемся баллончике было немного краски и я кое как окрасил лист. Через пять минут подошёл проверить лист и обалдел! Не смотря на плохую окраску и сильный холодный ветер лист разогрелся так что еле терпела рука! Это победа! ))) Далее всё закрутилось и позже прикрепил стекло. Видел разработку из пивных алюм банок, идея хорошая и работает, но уж очень заморочисто… Решил я следующий коллектор делать из демонтированной оконной рамы со стеклом (их полно на свалках), а в качестве абсорбера использовать те же пивные банки, но не полностью, а только их боковины. К сожалению установить сие чудо инженерной мысли не удалось((( ибо нет у меня ни дачи ни гаража.

Спустя три года я обзавелся нормальным телефоном и протестировал коллектор в солнечный день! Всем, кому интересно, можно увидеть сие на видео)))

3 года

Метки: солнечный, воздушный, коллектор, своими руками, тест, реальная температура

www.drive2.ru

Солнечный воздушный коллектор для отопления дома, дачи, гаража… — DRIVE2

Пару месяцев назад я попал на форумхаус и увидел там солнечные коллекторы для нагрева воды. Идея замечательная, но имеет некоторые недостатки, а именно зимний период когда трубы с водой может разорвать от расширения. И тут пришла мысля нагревать воздух, а как позже выяснилось и не одному мне))) идея весьма проста и позволяет нагревать воздух в здании не затрачивая киловаттов на электроприборы, газ и дрова! Делается коллектор очень просто и стоит дешевле и окупается почти моментально)))! Солнечную энергию можно запасать. Запасать на вечер, на сутки и даже на недели! И для этого нужен теплоаккумулятор. В качестве наполнителя аккума могут послужить речная галька или полторахи с водой (этим мообще ничего не страшно, да и теплоёмкость в разы выше).Свой первый серьёзный солнечный воздушный коллектор я сейчас доделываю. Это деревянный утеплённый фольгированным изолоном короб с покрашенным в чёрный мат абсорбером из куска профнастила. Я не особо поверил рассказам на форуме и решил всё опробовать сам… Нашёл кусок грязного профнастила и отмыл его. Не смотря на яркое солнце оцинкованный профнастил не высыхал тк был сильный минусовой ветер… Через 15 минут он всёже просох… В имевшемся баллончике было немного краски и я коекак окрасил лист. Через пять минут подошёл проверить лист и обалдел! Не смотря на плохую окраску и сильный холодный ветер лист разогрелся так что еле терпела рука! Это победа! ))) Далее всё закрутилось и теперь оствлось только прикрепить стекло и вентилятор. Видел разработку из пивных алюм банок, идея хорршая и работает, но уж очень заморочисто… Решил я следующий коллектор делать из демонтированной оконной рамы со стеклом (их полно на свалках), а в качестве абсорбера использовать те же пивные банки, но не полностью, а только их боковины… И об этом я напишу позже…

Кстати вот и видео с тестом солнечного коллектора в солнечный день)))

4 года

Метки: солнечный, воздушный, коллектор, своими руками

Нравится 13 Поделиться: Подписаться на автора

www.drive2.ru

Солнечные воздушные коллекторы | AW-Therm.com.ua

С. Михненко

Солнечные воздушные коллекторы приобретают все большее число сторонников. Это решение, которое открывает намного больше возможностей, чем жидкостные фототермальные коллекторы. Они действительно заслуживают того, чтобы на них обратили более пристальное заинтересованное внимание

Солнечные воздушные коллекторы (СВК) – это тепловой абсорбер, в котором в качестве рабочего тела используется воздух, а в качестве источника тепла – солнечное излучение. Холодный воздух попадает в систему каналов, где он нагревается солнечным теплом, и затем поступает в обогреваемое помещение.

Доступно каждому

СВК – это настолько просто, что домашние умельцы сами берутся изготавливать их буквально из подручных материалов. В ход идут даже пустые алюминиевые банки (рис. 1). Автор этой конструкции поделился своими разработками в социальной сети и сообщил, что осенью и весной в таком «подоконном» коллекторе воздух нагревается от 10-12 ºС до 80–85 ºС, а зимой в солнечный день от –15ºС на входе в СВК до +40–45ºС на выходе в помещение. Если в теплый сезон такой солнечный нагреватель уже не нужен – его просто убирают.

Рис. 1. Самодельный подоконный СВК из алюминиевых банок

Когда в ЕС разрабатывали нормы и стандарты по отоплению и теплоизоляции, то выяснилось, что их первые версии содержали существенно завышенные нормы. Оказалось, что сначала не учли все количество солнечного тепла, падающего снаружи на оболочку здания и попадающего внутрь через окна. Это исправили и ввели термин solar gain – количество «дарового» тепла от солнечной радиации, которого даже зимой бывает настолько много, что от него нужно защищаться, и которое нужно обязательно принимать во внимание при всех тепловых расчетах для зданий и сооружений.

Простой солнечный воздушный коллектор состоит из воздухопроводов, хорошо поглощающих солнечное излучение. Затем эта тепловая энергия передается воздуху. Нагретый в СВК воздух соединяется с вентиляционным каналом, подающим его внутрь здания.

Немного школьной физики

Теплопроводность воды приблизительно в 28 раз больше теплопроводности воздуха. При этом удельная теплоемкость воздуха примерно в 4 раза меньше удельной теплоемкости воды, а плотностьводы больше плотностивоздуха примерно в 816 раз.

Из этого следует, что как теплоноситель воздух менее выгоден, чем вода. Чтобы перенести одинаковое количество теплоты с воздухом, его нужно подать в сотни раз больше, чем воды. При этом между жидкостным теплоносителем и воздухом имеется «посредник». Но мы живем именно в воздушной среде. И нагревать, в конце концов, нужно именно воздух.

СВК обычно используется как дополнительный обогреватель для экономии на отоплении. Вспомните, как нагревается воздух в припаркованном на солнце автомобиле. Примерно то же самое происходит и в СВК.

Солнечный коллектор, работающий на воздухе – это отличная альтернатива жидкостным системам. В работе СВК практически нет ограничений – воздух в качестве теплоносителя не закипает и не замерзает. Такого понятия как «стагнация гелиосистемы», вынуждающая инженеров идти на дорогостоящие конструктивно-технологические решения в жидкостных коллекторах, просто нет.

Быстрый прогрев воздуха в помещении до нужной температуры – тоже одна из особенностей СВК. Несмотря на то, что воздух имеет меньшую теплоемкость, чем вода, он подвижен, хорошо регулируется (по температуре и количеству). Воздух обеспечивает быстрое изменение температуры и более равномерное распределение тепла внутри помещений. Он безопасен в пожарном отношении. Нагретый воздух можно распределять по каналам вентсистем.

На широте Киева

Как много тепла можно сэкономить, применяя СВК? Для этого количество солнечного тепла, падающего на землю, например, на широте Киева (~ 1384,05 кВт·ч/м2/год), умножим на КПД солнечного коллектора ~ 65–70 %. В результате получим выработку тепла одним квадратным метром солнечного коллектора около 900 кВт·ч. Показанная на рис. 1 самоделка потенциально может выработать до 2 МВт·ч тепла в год. Это немало.

Поступление солнечного тепла в течение года неравномерно. На широте Киева зимой поступает 14 %, весной — 29 %, летом -36 %, а осенью — 21 % от всего годового количества солнечной радиации. В январе-феврале эта цифра снижается до 3 % от суммы годового solar gain, и с 1 м2 СВК за это время удастся собрать около 30 кВт·ч тепловой энергии.

Тем не менее, СВК отлично работают именно в холодном климате. Особенно – когда погода неустойчива и возможно неожиданное понижение температуры или заморозки. Вот три фото (рис. 2 а, б, в) частных домов, оборудованных СВК. Один — в г. Ричмонде, штат Миннесота, (45°27′ с. ш.), два других – в г. Метуен (42°43′ с. ш.) и г. Оберн (42°12′ с. ш), штат Массачусетс, США. Все находятся намного севернее широты г. Киева (50° 25′ с. ш.).

Рис. 2. СВК на стенах жилых зданий:а) г. Ричмонд, Миннесота, США; б) г. Метуен, Массачусетс, США; в) г. Оберн, Массачусетс, США

Основные схемы

СВК выполняют по разным схемам – с забором наружного воздуха, с забором внутреннего воздуха; с перепуском. Их выполняют с остеклением и без. Они бывают пассивные и активные.

Есть три основные схемы подключения СВК: рис. 3 – с притоком наружного воздуха (а), с рециркуляцией внутреннего воздуха (б), с подмешиванием нагретого в СВК воздуха в вентиляционный канал (в) и их сочетания.

Если СВК использовать зимой для нагрева воздуха, циркулирующего только внутри помещения, то это значит, что 2 коллектора (рис. 1) площадью по 2,5 м2 в самые холодные месяцы года (январь – февраль) смогут обеспечить для донагрева в среднем 150 кВт·ч, а за всю зиму – 630 кВт·ч, весной – 1,3 МВт·ч, за осень – 0,95 МВт·ч. В ночное время перепуск воздуха можно отключать.

Рис. 3. Основные схемы подключения настенного СВК

Поскольку теплоноситель в СВК – это воздух, то, естественно, его очень часто используют совместно с системой вентиляции.

Если СВК подключить к каналу геотермальной гравитационной системы естественной вентиляции (рис. 3, в), то это значительно увеличит тягу в нем за счет увеличения перепада температур между притоком и выпуском и стабилизирует ее работу в межсезонье.

Пассивные схемы (рис. 3, 4) – это недорогое решение, его можно довольно просто применить в уже построенном доме.

Рис. 4. СВК с рекуператором тепла

При подключении по рециркуляционной схеме (рис. 3, б) или по схеме с подмешиванием воздуха из вентканала (рис. 3, в), можно получить систему очистки воздуха, многократно прогоняя внутренний воздух через систему фильтров, присоединенную к патрубкам СВК. Комбинированные схемы (рис. 4, 5), как правило, выполняются по схеме с рекуператором тепла. СВК с рекуператорами можно устанавливать как на стенах, так и на крышах.

Рис. 5. СВК в комбинации с рекуператором тепла воздуха, теплообменником для ГВС, аккумулятором тепла и воздушной печью

Активные СВК

Активная система с СВК (рис. 5, 6, 7) для циркуляции воздуха имеет привод вентилятора. В активной системе нет необходимости «правильно» размещать по вертикали впускные и выпускные отверстия, так как воздух всасывается или нагнетается принудительно, и гравитационные и конвекционные потоки, как в естественной системе, не используются. Поэтому СВК в активной системе можно устанавливать на наклонной крыше под самый конек, а затем нагретый воздух направлять вниз вентилятором.

Рис. 6. Когенерационная СВК в комбинации с PV-модулем, рекуператором тепла воздуха, теплообменником для ГВС

Еще один способ, который сейчас набирает популярность – это комбинация солнечного фотовольтаического коллектора (PV-панели) и расположенного снизу СВК. Суть этого метода заключается в рекуперации тепла, отбираемого с нижней (затененной) стороны PV-модулей (его часто бывает в 3 – 4 раза больше, чем электроэнергии, произведенной модулем).

Рис. 7. Активная СВК с системой слежения за температурой и вентилятором переменного расхода

Тут имеется очевидное техническое преимущество – помимо получения электричества от PV-панели, а от СВК – тепловой энергии (когенерация), отбор и рекуперация тепла воздушным коллектором улучшает режим работы и КПД PV-модуля. СВК позволяет PV-системе работать ближе к его наилучшей эффективности (обычно это около 25 ºС). Это уменьшает общий период окупаемости всей комбинированной системы. Избыточное тепло, которое поступает в помещение «не вовремя», можно сбросить в емкость ГВС. Если СВК имеют большую площадь, причем располагаются на стенах, по-разному ориентированным по сторонам света, то имеет смысл установить систему автоматики (рис. 7), следящую за работой системы. На рынке представлен большой выбор различных универсальных датчиков и программируемых контроллеров, которые можно подобрать к вентилятору с переменной скоростью, и затем собрать такую активную систему самому.

Сейчас имеется огромное число конструктивных решений для СВК. Постоянно появляются новые оригинальные предложения (например, как на рис. 8).

Рис. 8. СВК в виде съемной оконной фрамуги из алюминиевого профиля

Барьерные функции СВК

Помимо генерации тепла СВК может выполнять барьерные и теплозащитные функции. В этом случае СВК занимает всю поверхность стены или крыши. Наружная поверхность СВК и стена здания образуют так называемый фасад с двойной оболочкой (ФДО). Таким путем можно «накрыть» стены, крыши и наклонные элементы зданий. Наружная часть ФДО выполняет с одной стороны барьерную функцию (защита внутренней части – т.е. собственно стены здания от намокания), с другой – это теплопоглощающая поверхность, хорошо пропускающая тепло на свою внутреннюю сторону. Ее обычно выполняют с мелкой перфорацией.

ФДО внутри разделен на вертикальные секции. Наружная поверхность ФДО нагревается солнечным теплом и передает его воздуху между наружной и внутренней стенками. Нагретый воздух активно поднимается вверх, откуда его отбирают внутрь для подогрева здания. Очень часто, как и в обычных СВК, горячий воздух здесь используется в сочетании с системой вентиляции – непосредственно или косвенно, через рекуператор. Восходящий поток горячего воздуха в полости ФДО энергично подсушивает стену здания, улучшая его теплоизоляционные характеристики.

Это свойство высоко оценили в странах с суровым климатом – в Канаде, на севере США, в Германии и Скандинавии. СВК типа «солнечная стена» здесь не только используется для отопления или подогрева воздуха в системе вентиляции, сколько выполняет энергосберегающие функции.

На рис. 9 показаны примеры применения СВК в виде ФДО – в аэропорту Торонто, Канада, на крыше и наклонной стене производственного здания в г. Бутбей Харбор, Мэн, США, в средней школе в г. Шервуде, Массачусетс, США, на базе ВМС США в Портсмуте. Здание авиационной администрации в аэропорту Торонто удостоено серебряного сертификата LEED – за высокие энергосберегающие и экологические свойства.

Рис. 9. СВК типа «солнечная стена» на фасадах общественных и производственных зданий в Канаде и США

Важное свойство сочетания СВК–ФДО в том, что в жаркое время года эта система охлаждает здание. Вверху и внизу системы устроены заслонки, которые обычно закрыты в холодное время. Воздух через перфорированные отверстия (в некоторых профильных системах выполнены специальные щели) в режиме работы СВК проникает в межфасадное пространство ФДО, поднимается вверх и поступает в распределительные каналы для обогрева. В жаркое время года верхние и нижние заслонки полностью открываются, каналы для обогрева перекрываются, и нагретый воздух интенсивно вентилирует межфасадный зазор. Избыточное тепло уносится вверх, а само здание не перегревается. Автоматика регулирует поворот наружных заслонок и степень открывания каналов для забора теплого воздуха внутрь здания. Ночью заслонки закрываются, и СВК–ФДО служит буфером, препятствующим потере тепла зданием.

Перспективное решение

СВК появились и начали активно применяться не так давно. Намного позже, чем, например фотовольтаические и жидкостные фототермальные коллекторы. Все особенности и преимущества СВК еще не раскрыты. Специальные исследования, проведенные в США и Канаде, показали, что системы СВК (фасадные и модульные) уменьшают энергопотребление здания примерно на 10–50 % от обычной тепловой нагрузки на отопление зимой и охлаждение летом. Совместное использование СВК с системами отопления, вентиляции и климатизации, а также в качестве наружного защитного щита здания, весьма перспективно.

В Украине технологию СВК активно продвигают энтузиасты экологического строительства. Однако в нашей стране уже имеются компании, предлагающие эту разновидность солнечной техники в промышленном исполнении.

Больше важных статей и новостей в Telegram-канале AW-Therm. Подписывайтесь!

Вас может заинтересовать:

Вам также может понравиться

Заказ был отправлен, с Вами свяжется наш менеджер.

aw-therm.com.ua

Солнечный коллектор своими руками

На сегодняшний день использование солнечной энергии для получения тепла становится более популярным. Это связано с экономией средств, независимостью от энергоснабжающих организацией и главное, возможностью создать своими руками солнечный коллектор, который будет снабжать ваш дом теплом в холодные периоды.

Принцип работы системы солнечного коллектора

Принцип работы системы солнечного коллектора

В систему солнечного воздушного обогрева входят:

  • солнечный воздушный коллектор;
  • вентилятор;
  • воздуховоды.
Как сделать солнечный коллектор

Солнечный коллектор, созданный самостоятельно работает по принципу парникового эффекта — солнечные лучи через стекло нагревают внутреннюю часть коллектора. Недостаточно теплый воздух поступает в коллектор, где и нагревается, а затем с более высокой температурой пропускается в помещение.

Достоинства и недостатки воздушной системы

Как и любое оборудование воздушный коллектор имеет свои достоинства и недостатки. К достоинствам данного оборудования можно с уверенностью отнести:

  • простота в изготовлении, при небольших затратах;
  • воздух в коллекторе своими руками способен нагреваться до +800С;
  • благодаря отсутствию жидкости в коллекторе, система не замерзает, не бывает никаких протеканий.

Если говорить о недостатках, следует отметить:

  • отсутствие возможности накопить энергию;
  • результативная работа коллектора возможна только в солнечную погоду;
  • для установки оборудования следует сделать два отверстия в стене.
Солнечный коллектор своими руками — подготовка к работе

Жестких рамок относительно размеров и конструкции солнечных коллекторов не существует. Вы можете самостоятельно продумать схему и расположение.

В связи с тем, что зимой солнце находится очень низко относительно горизонта, рекомендуется устанавливать воздушные коллекторы на стенах с южной стороны.

Первый шаг — прежде чем начинать работу, следует определиться с месторасположением будущего коллектора, проследить чтобы стена, на которой он будет установлен не затенялась деревьями или сооружениями.

Следующим шагом при создании солнечного коллектора своими руками следует выбрать вентилятор с нужной вам производительностью.

Рассчитать производительность конкретного вентилятора возможно самостоятельно. Вычисления выполняются исходя из расчета рабочего внутреннего объема коллектора. К примеру, если короб будет иметь размеры 2000 х 1000 х 115 мм, при учете того что толщина утеплителя 40 мм, оргстекла 10 мм, а задней стенки 5 мм, тогда внутренний объем ориентировочно составит 2 х 1 х 0,06 м3. Далее необходимо умножить внутренний рабочий объем коллектора на 2000 и результатом станет производительность нашего вентилятора в количестве 240 м3/ч.

Самостоятельное создание системы солнечного обогрева

 Первое, что необходимо сделать в процессе создания своими руками воздушного коллектора с лабиринтовой системой — сбить корпус. Он может быть выполнен из дерева или из влагостойкой фанеры. Толщина боковых стенок — 20 мм, задней — 5 мм. Размер короба получится 2000 х 1000 х 15 мм. На самом деле вы можете выбирать размеры по собственному усмотрению.

Такая система является не совсем обязательной, однако именно благодаря лабиринту повышается КПД коллектора. Это происходит потому, что длина пути прохождения воздуха увеличивается в три раза, а следовательно воздух прогревается сильнее. Для того чтобы не падала производительность вентилятора следует обратить внимание ширину проходов в лабиринте, которая не должна снижаться. К примеру, если площадь пропускного окна составляет 176 см2, переходы в лабиринте не должны быть меньше.

Когда короб будет готов и система в нем будет установлена, его необходимо покрасить с учетом того, что коллектор будет размещаться на улице под открытым небом.

 Варианты утепления воздушного солнечного коллектора

С целью достижения максимального эффекта стенки коллектора необходимо утеплить. Для этого вы можете выбрать пенополистирол, пенопласт, минеральную вату или другие утеплительные материалы. В случае если температура применения вашего утеплителя будет ниже 1700С, нужно будет дополнительно использовать специальную подложку, которая применяется для утепления каминов и дымоходов (вспененный пенополиэтилен).

Утепление можно создавать разными способами, к примеру:

  1. На дно укладывается минеральная вата слоем в 4 см, а затем алюминиевый лист (абсорбер) толщиной 0,2 — 0,5 мм.
  2. Второй вариант предусматривает укладывание на дно пенопласта (4 см), сверху него — пенополиэтилен с алюминиевой фольгой (3 мм), затем алюминиевый лист толщиной 0,2 — 0,5 мм (абсорбер).

Следует отметить, что в жаркую погоду температура в коллекторе может достигать 1700С, а в зимнее, при температуре воздуха ниже 100С температура не будет превышать 900С.

Абсорбер представляет собой поглощающую поверхность. Для этого используются листы из меди или алюминия. Эти материалы отличаются своей высокой способностью проводить тепло. При создании солнечного коллектора своими руками чаще применяются алюминиевые листы, поскольку они гораздо легче медных и значительно дешевле.

К сведению, 1 м2 алюминиевого листа (0,5 мм) весит 1, 4 кг. Лист меди такого же размера весит 4,5 кг, что повышает его стоимость. Разница значительная.

В случае если вы не можете найти алюминиевый лист, можно заменить его профнастилом или оцинкованным листом, однако нужно понимать, что несколько градусов тепла в этом случае будет теряться.

Стыки на углах абсорбера следует обработать герметиком. Это поможет предотвратить потерю драгоценного тепла и попадание пыли от утеплителя (в случае использования для этой цели минеральной ваты).

Следующим шагом после самостоятельной сборки солнечного коллектора будет подготовка впускного и выпускного отверстий. Диаметр отверстий должен соответствовать размерам вентилятора и гофрированной или воздухоотводной трубы.

Покраска и остекление солнечного коллектора

Внутреннюю поверхность солнечного коллектора следует окрашивать черной матовой краской (жаростойкой). Для этого случая отлично подойдет краска в баллончике, которая используется при окрашивании глушителей для авто, мангалов и др. Данная краска высыхает достаточно быстро, однако будет целесообразным просушить солнечный коллектор в течение одного — двух дней с целью исчезновения запахов.

Остеклить коллектор своими руками можно при помощи сотового или монолитного поликарбоната — у этих материалов широкий диапазон температуры от -400С до +1200С.

В процессе работ по остеклению, с целью предотвращения утечек тепла следует использовать герметик и резиновые уплотнители. Фиксацию стекла можно выполнить алюминиевым уголком.

Готовый коллектор своими руками устанавливается путем просверливания в стене двух отверстий, по размеру совпадающих с диаметром воздуховодов. Не забудьте утеплить их при помощи ваты или пены, чтобы стены не забирали тепло.

Вентилятор может быть установлен внизу или вверху. Всасывающее отверстие оснащается небольшим воздушным фильтром. Для этого можно использовать пористую губку, синтепон или даже капроновый чулок.

как сделать воздушный Солнечный коллектор Солнечный коллектор своими руками

Первый пример: Температура воздуха на улице +60С. Температура выхлопа составляет +650С (при учете того, что всасываемый воздух имел температуру +150С).

Второй пример: Температура воздуха на улице -50С. Температура выхлопа составляет +370С (при учете того, что всасываемый воздух имел температуру +110С).

Коллектор собственными руками с использованием обычного стекла

Компенсировать затраты на электрическую энергию для вентилятора можно при помощи небольшой солнечной панели, которая самостоятельно или через инвертор обеспечит питание вентилятора.

Автоматизировать процесс отопления возможно путем установки термостата, имеющего выносной датчик. Датчик сможет автоматически отключать вентилятор в случае выхлопов воздуха низкой температуры. Пределы вы сможете устанавливать самостоятельно.

Рекомендуем прочесть:

www.solar-battery.com.ua

Солнечный коллектор своими руками — на 100% проверенный способ изготовления

29.08.2014

Концепция энергетически эффективного дома предполагает создание, внедрение и эксплуатацию возобновляемых источников энергии. Все большее распространение стали получать собранные солнечный коллектор своими руками, которые не так давно встречались крайне редко.

Постоянное совершенствование гелиосистем, существенное падение цен на них привило к еще большему появлению их в обыденной жизни. Стоимость заводских моделей сегодня соизмерима с затратами, необходимыми на обустройство классической системы отопления. Однако такую технологию может сделать каждый самостоятельно.

Содержание статьи:

Принцип работы солнечного коллектора

Если кратко описать принцип работы коллектора – он необходим для захвата солнечной тепловой энергии. В дальнейшем она концентрируется и используется человеком.

Коллекторная система состоит из следующих составляющих:

  • Тепловой аккумулятор (обычная емкость под жидкость)
  • Теплообменный контур
  • Непосредственно коллектор

Жидкий или газообразный теплоноситель циркулирует по коллектору. Полученная энергия нагревает его и, посредством смонтированного бака-аккумулятора, передает тепло воде.

Нагретая жидкость хранится в баке до того, покуда она не будет использована. Сфера ее применения очень широка – от обычных хозяйственных нужд до отопления дома. Чтобы вода быстро не остывала, необходимо качественно тепло изолировать емкость.

Циркуляцию воды в коллекторе делают одним из двух способов: естественным или принудительным способом. В баке-аккумуляторе может монтироваться дополнительный элемент, нагревающий жидкость, который будет включаться при достижении низких температур окружающей среды и поддерживать температуру воды, например, зимой, когда солнцестояние непродолжительное.

Вводное видео об устройстве водонагревателя

Виды солнечных коллекторов

Планируя солнечный коллектор своими руками и установить в доме, необходимо определиться с типом конструкции:

  • Воздушный
  • Вакуумный

  • Плоский

Модели, у которых теплоносителем является воздух, используются крайне редко. Это связано со свойствами жидкости — тепло она проводит значительно лучше, чем газ. Воздушные коллекторы чаще делают плоской формы, чтобы воздух, контактируя с поглощающим устройством, естественным образом нагревался.

схема воздушного солнечного коллектора

Вакуумные солнечные коллекторы

Вакуумные модели самые сложные. Вместо коробки, которая покрывается стеклом, у него используются большие по габаритам трубки из стекла. Внутри них имеются трубочки с меньшим диаметром, в которых находится абсорбер, собирающий тепловую энергию. Между трубками – вакуум, он выполняет роль теплоизолятора.

схема вакумного солнечного коллектора

Плоские солнечные коллекторы

Самым распространенным является плоский солнечный коллектор, внутри которого располагается специальный абсорбирующий слой, помещенный в стеклянную коробку. Он соединяется с трубками, по которым перемещается жидкий теплоноситель (чаще пропилен-гликоль).

схема плоского солнечного коллектора

Но решаясь смастерить солнечный коллектор своими руками, необходимо понимать, что сделать столь сложные устройства невозможно, аналогичные промышленным. К тому же, их КПД будет значительно ниже, меньше эксплуатационный срок, но и материальные вложения тоже.

Хотите узнать больше про альтернативное отопление дома ?

Читайте так же, о том как сделать отопление дома на солнечных батареях

Чертежи конструкций

Приступаем к работе

Прежде чем сооружать солнечный коллектор, необходимо произвести соответствующие расчеты и определить, как много энергии он должен производить. Но от самодельной установки ждать высокого КПД не стоит. Сориентировавшись, что его будет достаточно – можно приступать.

Работу можно поделить на несколько основных этапов:

  1. Изготовить короб
  2. Изготовить радиатор или теплообменник
  3. Изготовить аванкамеру и накопитель
  4. Собрать коллектор

Чтобы изготовить коробку под солнечный коллектор своими руками, следует заготовить обрезную доску толщиной 25-35 мм и в ширину 100-130 мм. Дно ее следует сделать текстолитовым, оснастив его ребрами. Оно также должно быть хорошо теплоизолированное при помощи пенопласта (но предпочтение отдают минеральной вате), накрытого оцинкованным листом.

Еще 4 эффективных способа альтернативного отопления дома

О которых вы можете узнать в нашей следующей статье

Подготовив короб, настает пора мастерить теплообменник. Следует придерживаться инструкции:

  1. Необходимо подготовить 15 тонкостенных металлических трубок длиной 160 см и две дюймовые трубы длиной 70 см
  2. В обоих утолщенных трубках сверлятся отверстия диаметра меньших трубок, в которые они будут устанавливаться. При этом нужно следить за тем, чтоб они были по одной стороне соосны, максимальный шаг между ними 4.5 см
  3. Следующий этап – все трубки нужно собрать в единую конструкцию и надежно сварить
  4. Теплообменник монтируется на лист оцинковки (ранее прикрепленный к коробу) и фиксируется при помощи стальных хомутов (можно сделать металлические зажимы)
  5. Днище короба рекомендуют покрасить в темный цвет (например, черный) – он будет лучше поглощать солнечное тепло, но чтобы снизить тепловые потери, внешние элементы красятся белым
  6. Завершить монтаж коллектора необходимо установкой покровного стекла около стенок, при этом не забыв о надежной герметизации стыков
  7. Между трубками и стеклом оставляется расстояние, равное 10-12 мм

Остается соорудить накопитель под солнечный коллектор. Его роль может исполнять герметичная емкость, объем которой варьируется около 150-400 л. Если найти одну такую бочку не удается, можно сварить между собой несколько небольших.

Как и коллектор, накопительный бак основательно изолируют от потерь тепла. Остается изготовить аванкамеру – небольшой сосуд объемом 35-40 л. Он должен оснащаться падающим воду устройством (шарнирным краном).

Остается самый ответственный и важный этап – собрать коллектор воедино. Сделать это можно таким образом:

  1. Вначале необходимо установить аванкамеру и накопитель. Необходимо следить, чтоб уровень жидкости в последнем был на 0.8 м ниже, чем в аванкамере. Так как воды в таких устройствах может собираться немало, необходимо продумать, каким образом они будут надежно перекрываться
  2. Коллектор размещается на крыше дома. Исходя из практики, рекомендуется делать это на южной стороне, наклонив установку под углом 35-40 градусов к горизонту
  3. Но нужно учитывать, что между накопителем и теплообменником расстояние не должно превышать 0.5-0.7 м, иначе потери будут слишком существенны
  4. В конце должна получиться следующая последовательность: аванкамера обязана располагаться выше накопителя, последний – выше коллектора

Наступает самый ответственный этап – необходимо соединить все составляющие воедино и подключить к готовой системе водопроводную сеть. Для этого потребуется посетить магазин сантехники и приобрести необходимые фитинги, переходники, сгоны и прочую запорную арматуру. Высоконапорные участки рекомендуют соединять трубой диаметром 0.5 дюйма, низконапорные – 1 дюйм.

Введение в эксплуатацию выполняется следующим образом:

  1. Установка заполняется водой посредством нижнего дренажного отверстия
  2. Подсоединяется аванкамера и регулируются уровни жидкости
  3. Необходимо пройтись вдоль системы и проверить, чтобы не было утечек
  4. Все готово к повседневной эксплуатации

Солнечный коллектор из змеевика холодильника

Солнечный коллектор своими руками можно смастерить из обычного змеевика, снятого со старого холодильника. Для работы потребуется подготовить:

  1. Непосредственно змеевик
  2. Рейки и фольга для каркаса
  3. Бочка или бак для воды
  4. Резиновый коврик
  5. Запорная арматура (вентили, труб и т. д.)
  6. Стекло

Промыв змеевик от фреона, необходимо сбить вокруг реечный каркас. Его точные размеры будут зависеть от размера рабочего узла, который был демонтирован с холодильника. Коврик необходимо подогнать под рейки, среди которых змеевик должен свободно располагаться.

На резиновый коврик (дно каркаса) укладывается фольгирующий слой. Затем змеевик фиксируют при помощи винтовых хомутов. В стенках проделываются отверстия, через которые будут проходить трубы. Повысить продуктивность можно за счет герметизации стыков герметикам.

Дно также укрепляется рейками. Сверху монтируется стекло и фиксируют при помощи скотча. Чтобы не волноваться, можно вырезать несколько алюминиевых пластинок и сделать из них прижимы.

Видео о техническом устройстве и испытании солнечного коллектора:

В заключении

Такое сооружение, как солнечный коллектор своими руками, может существенно повысить уровень комфорта в загородном доме или на даче. Пусть незначительно, но оно снижает траты на потребляемую энергию, вырабатываемую классическими источниками энергии.

Вам может понравиться

v-teplo.ru

newspasky.ru

Простой солнечный коллектор своими руками

Мысль об использовании солнечной энергии для собственных нужд старовата, но остается актуальной. Это наиболее доступный и безопасный ресурс тепла и потенциально электричества. Пока что нам по силам для собственных целей использовать тепловую энергию, естественно, с помощью самодельного солнечного коллектора своими руками, покупать подобную вещь бессмысленно, окупится года через три, не раньше.

Если бог не обидел талантом работать руками, но опыта в постройке подобных устройств не так много, как хотелось бы, попробуйте свои возможности в конструировании самого простого варианта самодельного солнечного коллектора.

Как сделать солнечный коллектор своими руками

Сделать коллектор солнечного тепла на основе теплового насоса или тепловой трубы можно только при наличии хорошей базы знаний о физических процессах, хотя, по сути, они мало чем отличаются от тепловых трубок, охлаждающих плату ноута или видеокарту.

Сделать водяной солнечный коллектор можно, но потребуется не менее 150дол капитала и неделя времени.

Преимущества воздушных солнечных коллекторов

Самым удачным сочетанием характеристик, стоимости и надежности обладает воздушный солнечный коллектор. Мало того, капиталисты умудряются продавать абсолютно простое и примитивное устройство за очень немаленькие деньги.

В чем преимущества «воздушника»:

  • В конструкции коллектора просто нечему ломаться. Здесь он даже опережает солнечные концентраторы на основе зеркал, параболоидов и всякой подобной фантастики;
  • Даже если в задумке вы сделали огреху или слабину, такой солнечный коллектор, заботливо сложенный своими руками все равно будет работать, его можно будет менять, модифицировать или совершенствовать, пока не достигнете нужного результата;
  • Внешний вид солнечного коллектора вряд ли поразит воображение, но тот факт, что на выходе можно получить поток под 70оС, у любого скептика вызовет уважение.

Совет! Прежде чем приступать к решению головоломки, как сделать солнечный коллектор своими руками, задумайтесь о месте его расположения с максимальным уровнем освещения и необходимой защитой от действий завистников-вандалов.

Иногда в запасниках в гараже или сарае без дела и пользы валяются остатки строительных материалов, которые при желании можно использовать при сборке.

Многочисленные видео о материалах для солнечного коллектора своими руками говорят, что проще всего сделать устройство, используя листовой профнастил из оцинкованного железа.

Самые умные пытаются изготовить солнечный коллектор из стальных труб, профиля, алюминиевых банок, бутылок из-под газировки, в общем, из любого хлама, оказавшегося под рукой.

На самом деле, чтобы сделать серьезный тепловой эффект, необходим подходящий материал — медь, алюминий или профнастил, без покраски или полимерного покрытия. От меди откажемся сразу в силу ее дороговизны и высокого риска кражи любителями цветмета.

Какие материалы сделают коллектор самым эффективным

Остановимся на конструкции солнечного коллектора из профнастила или листового алюминия, применение стальных труб снижает эффективность солнечного накопителя, использование тонкостенных алюминиевых профилей дает самый лучший эффект, но требует денег и оборудования. Конкретно, 30мм труба ПАС-1828 ценою потянет на доллар за метр, кроме того, большой объем сварочных работ с использованием электросварки с аргоном, что тоже будет стоить примерно половину всех затрат.

Коллектор из профнастила примерно вдвое хуже собирает тепло, но в разы дешевле. Уменьшение эффективности легко компенсируется, если сделать площадь поверхности конструкции больше.

Кроме профнастила, можно использовать алюминиевый лист, применяемый для термоизоляции печей или нагревательных контуров. Если сделать из него профиль, аналогичный профнастилу, получим конструкцию, при всей дешевизне и простоте работ не уступающую солнечному коллектору из алюминиевых труб.

Этапы изготовления солнечного коллектора

Получив максимум знаний из всего, что доступно в интернете, посчитаем свои материальные возможности и сделаем выбор для первой своей конструкции коллектора.

Совет! При отсутствии опыта и практических результатов оптимальным будет сделать солнечный коллектор из профнастила небольшого размера. Такая постройка благодаря использованию обрезков и остатков материалов может дать неоценимый опыт и избежать ошибок при изготовлении мощных устройств.

После определения примерных размеров коллектора, на основании имеющихся в распоряжении материалов, приступаем к сборке теплообменника. Основание коллектора проще всего сделать из ОСБ плиты толщиной 8-10мм. Кроме того, из этого же материала сделаем подводящие и отводящие воздушные каналы.

Сделаем ряд основных технологических операций в следующей последовательности:

  1. На заготовку листа ОСБ уложим сверху лист профнастила или алюминиевого самодельного профиля и сделаем разметку расположения подвода и отвода воздуха, боковых стенок короба. Заготовка из прессованной древесины должна быть больше листа профнастила на 10-15мм на боковые стороны и на 100мм для монтажа верхнего и нижнего воздуховодов;
  2. Вырезаем из ОСБ две заготовки шириной 50-60мм, в зависимости от высоты ребра профнастила, размер доски нужно сделать под ширину будущего теплообменника. Ставим заготовку на ребро и прикладываем к торцу стального листа, карандашом или маркером обводим контур профиля на заготовке. Далее электролобзиком сделаем вырез на заготовке ломаной лини, при необходимости подгоняем шлифовальным инструментом так, чтобы контур выреза совпадал с изгибами профнастила. Аналогичную операцию выполним для второго торца листа профиля;
  3. Из полученных заготовок сделаем из остатков ОСБ коробчатые воздуховоды, торцы стенок следует сделать с минимальными щелями. Если подвод–отвод воздуха в теплообменник будет осуществляться через боковые окна, для второго отверстия следует сделать заглушку. Как вариант, поток можно подводить-отводить через дополнительное окно в центре воздуховода;
  4. Заднюю стенку – основу из ОСБ тщательно грунтуем и окрашиваем несколькими слоями светлой краски или оклеиваем алюминиевой фольгой, используемой для кулинарных целей. Лучшим вариантом будет сделать покрытие из цельного листа металла, лучше оцинкованного.
  5. Поверх покрытия, точно по разметке, устанавливаем лист профнастила, края листа и ребра, прилегающие к покрытию основы, можно обработать масляной краской или герметиком. По периметру листа сделаем дополнительное крепление саморезами по дереву.

После высыхания краски монтируем коробчатые воздуховоды и боковые стенки. Торцы боковых стенок и стенки воздуховодов должны находиться в одной плоскости, что позволит наклеить сверху лист стекла или монолитного поликарбоната. После установки стекла, его торцы стоит заклеить матерчатой лентой, чтобы сделать менее чувствительными к случайным ударам или сколам.

Совет! Непростой операцией является чернение поверхности профнастила. Зачастую используют химическое чернение, но если нет опыта, лучше прибегнуть к старой технике с использованием лака и сажи.

Чтобы сделать построенный солнечный коллектор полноценным тепловым прибором, к окнам подвода и отвода воздуха необходимо прикрепить гофровые трубы и электровентилятор, можно позаимствовать с кухонной вытяжки или сушилки. На выбранном месте установки заведите гофру в отапливаемое помещение и подключите вентилятор к электропитанию.

Испытание солнечного коллектора следует сделать при самых разнообразных погодных условиях и положении солнца. Устройство обладает низкой инерцией, в течение 10-15мин пребывания под прямым солнечным светом температура выходящего воздуха должна подняться минимум до 70оС и выше.

Варианты исполнения солнечного коллектора

Чаще всего воздушные солнечные коллекторы строятся своими руками с целью сделать отопление помещения менее затратным, используются для подогрева жилых домов и складов.

Чемпионами по популярности среди солнечных коллекторов являются самые разнообразные подогреватели для гаражей.

Хитом и высшей точкой целесообразности применения воздушного солнечного коллектора является использование поверхности крыши. Установив коллектор на скатах крыши, хозяин сделает защиту дома от летнего зноя и получит огромный поток теплого воздуха, который по каналам направляется на алюминиевый водный теплообменник, смонтированный на коньке крыши.

Такая схема дает примерно 400Вт/ч с квадрата в период с 9 по 18 часов летом. При наличии теплоаккумулятора вопрос обеспечения горячей водой будет решен без дорогостоящего вакуумного или водяного солнечного коллектора.

Источник:

Солнечный коллектор своими руками

Самодельный солнечный коллектор из ПВХ шланга сделанный своими руками. Пошаговое изготовление солнечного коллектора мощностью 2,3 кВт*ч для нагрева воды: 19 фото.

С помощью самодельного солнечного нагревателя, можно бесплатно нагревать воду для домашних нужд: для душа, рукомойника, раковины на кухне. Конструкция коллектора довольно проста и сделать его своими руками сможет каждый.

Изготовление самодельного солнечного коллектора

Для сборки коллектора понадобились следующие материалы:

  • Лист OSB 2500 х 1250 мм – 1 шт.
  • Брус 40 х 50 х 4500 мм – 2 шт.
  • Поликарбонат – 2100 х 1200 мм.
  • Листы пенополистирола – толщина 20 мм – 3 шт.
  • Фольгированный утеплитель – 2 м.
  • Перфорированная жесть – 2 м.
  • ПВХ шланг – 25 м.
  • Эмаль ПФ 115 – 1 л.
  • Чёрная краска в баллончике – 1 шт.
  • Шурупы 35 мм – 100 шт.

Распилены бруски. Под лист поликарбоната в брусках сделан пропил. Состыковал бруски по углам в замок. Чтобы короб был герметичным, промазал бруски силиконом. Короб основа под солнечный коллектор готова.

В короб уложены листы пенополистирола, сверху наклеен фольгированный утеплитель. Шлаг будет крепиться проволокой, для этого на коробе закрепил полоски перфорированной жести с отверстиями, через которые была вставлена проволока. На дно короба уложен и закреплён проволокой ПВХ шланг.

Концы шланга выведены из короба через отверстия в брусках. Чтобы увеличить площадь поглощения солнечной энергии фольгированная поверхность покрашена чёрной краской из баллончика.

  • Короб закрыт поликарбонатом и посажен на силикон.
  • Солнечный коллектор подключён к баку ёмкостью на 500 литров.
  • Для перекачивания воды по системе был установлен циркуляционный насос.
  • Панель коллектора установлена по направлению в солнечную сторону.
  • Эффективность работы самодельного солнечного коллектора:
  • В 17:00 набрана ёмкость воды 500 л и включен циркуляционный насос, начальная температура воды +24 °С.
  • В 18:00 температура воды в баке поднялась до +28°С.

Подсчитаем мощность солнечного коллектора по формуле:

Q=c*m*(t2-t1).

Удельная теплоемкость для воды с = 4183 (Дж*кг*К).

Масса 0.5 куб. м воды m=500.

Температура t2 — t1 = 28 — 24 = 4 °С.

Q = 4183*500*4 = 8366000 (Дж) = 8366 (КДж).

1 (кДж) = 0,28 (Вт/ч)

Мощность самодельного коллектора составила = 2,342 Киловатт в час.

Источник:

Особенности изготовления солнечного коллектора своими руками

Если вы являетесь сторонником альтернативных методик получения недорогой тепловой энергии, попробуйте сделать элементарный солнечный коллектор своими руками. Его устройство сравнительно простое, а эффективность достаточно высока.

Разновидности солнечных коллекторов – какими они бывают?

Под коллекторами понимают устройства, которые способны поглощать солнечную энергию, модифицировать ее в тепло, а затем отправлять на теплоноситель. Стандартный солнечный коллектор выполняется в виде пластмассового либо металлического корпуса, в который устанавливают пластины черного цвета из металла. Эти пластинки могут нагреваться до какой-либо определенной температуры.

В зависимости от ее величины, коллекторы делят на высоко-, средне- и низкотемпературные. Высокотемпературные устройства изготовить в домашних условиях нереально.

Они создаются по сложным технологиям для эксплуатации на промышленных крупных объектах.

Среднетемпературные конструкции, аккумулирующие достаточное количество солнечной энергии, можно применять для отопления жилых домов, а низкотемпературные – для подогрева воды. Эти два типа коллекторов вполне возможно сделать самому.

Интересующие нас устройства подразделяют на следующие виды:

  • плоские;
  • накопительные;
  • воздушные;
  • жидкостные.

Солнечный коллектор на крыше

Плоский коллектор – это конструкция в виде ящика из металла с пластиной для поглощения света от Солнца. Она накрыта крышкой из стекла с небольшим содержанием железа, за счет чего на тепловоспринимающую пластинку попадает практически весь солнечный свет.

Конструкция обязательно термоизолируется. Коэффициент полезного действия такого коллектора объективно мал – около 10 %. Увеличить его можно посредством нанесения специального полупроводника с аморфными характеристиками на пластину.

Такие устройства годятся для нагрева воды в быту.

Более эффективным считается термосифонный (накопительный) коллектор. Его используют для нагрева воды и поддержания температуры на заданном уровне в помещении в течение некоторого времени.

Конструктивно он выполняется в виде 1–3 баков, устанавливаемых в ящик с теплоизоляцией. Как и плоское устройство, его накрывают крышкой из стекла. В холодную пору применять такой коллектор затруднительно.

А вот летом, когда свет от Солнца очень сильный, его можно эксплуатировать в домашних условиях.

Читайте также:  Лучшие российские тепловые насосы

Жидкостные солнечные конструкции используют в качестве теплоносителя воду. Они изготавливаются с разомкнутым либо замкнутым принципом теплообмена, могут быть без стекол и остекленными.

Эксплуатация подобных устройств сопряжена с неудобствами – они часто подтекают и вполне могут замерзнуть в зимние месяцы. Этих проблем лишены воздушные коллекторы, которые чаще всего применяются для сушки фруктов, овощей и относительно небольших объемов другой сельскохозяйственной продукции.

Воздушный аппарат конструктивно прост, его легко обслуживать, поэтому он пользуется заслуженной популярностью.

Как работает коллектор – все просто

Любая из рассматриваемых в статье конструкций для преобразования солнечной энергии в тепловую имеет два основных компонента – теплообменное и светоулавливающее аккумуляторное устройство. Второе служит для улавливания солнечных лучей, первое – для их модификации в тепло.

Самый прогрессивный коллектор – вакуумный. В нем аккумуляторы-трубы вставляются друг в друга, а между ними формируется безвоздушное пространство. По сути, мы имеем дело с классическим термосом.

Вакуумный коллектор за счет своей конструкции обеспечивает идеальную теплоизоляцию устройства. Трубы в нем, кстати, имеют цилиндрическую форму.

Поэтому лучи Солнца попадают на них перпендикулярно, что гарантирует получение коллектором большого количества энергии.

Прогрессивные вакуумные устройства

Существуют и более простые устройства – трубные и плоские. Вакуумный коллектор превосходит их по всем показателям. Единственная его проблема – относительно высокая сложность изготовления. Собрать такой прибор дома можно, но потребуется приложить немало усилий.

Теплоносителем в солнечных коллекторах для отопления, о которых идет речь, выступает вода, которая стоит мало, в отличие от любых современных видов топлива, и не выделяет в окружающую среду углекислого газа.

Устройство для улавливания и преобразования лучей Солнца, которое можно сделать самому, с геометрическими параметрами 2х2 квадратных метра, способно в течение 7–9 месяцев обеспечивать вас ежедневно примерно 100 литрами теплой воды.

А конструкции больших размеров вполне можно эксплуатировать и для отопления дома.

Если вы хотите сделать коллектор для круглогодичного использования, нужно будет установить на него добавочные теплообменники, два контура с веществом-антифризом и увеличить его поверхность. Подобные устройства обеспечат вас теплом и в солнечную, и в пасмурную погоду.

Установка Станилова – как изготовить самостоятельно?

В Европе востребованными являются установки для отопления дома, производимые по чертежам Станислава Станилова – известного изобретателя и инженера из Болгарии. Собрать такой солнечный коллектор своими руками можете и вы, руководствуясь далее приведенной схемой выполнения работ:

  1. Берем деревянные доски сечением 12х2,5 (3) см, сколачиваем из них короб, усиливая дополнительно его днище брусками 5х3 см.
  2. Укладываем на дно получившегося ящика теплоизолирующий материал – минвату, пенополистирольные либо пенопластовые плиты, а сверху – лист жести или обыкновенного железа.
  3. Из стальных труб нужно будет сделать радиатор трубчатого типа (сварить между собой несколько трубных изделий) и установить его в короб.
  4. Тщательно фиксируем радиатор стальными трубными хомутами, замазываем щели и зазоры в ящике, герметизируем его.
  5. Внешние элементы конструкции окрашиваем в белый либо серебристый цвет (тем самым значительно уменьшаем тепловые потери), радиатор и дно короба – в черный цвет.

После этого нужно будет сделать тепловой накопитель и специальную аванкамеру. Функцию первого может выполнять любая герметичная емкость объемом 150–400 литров. Допускается брать несколько баков и соединять их между собой.

Аванкамеру несложно сделать из сосуда (обязательно герметичного) объемом 40 и более литров. В нее следует поместить обычный шар-кран, используемый в сливном бачке унитаза.

Он необходим для формирования небольшого, но постоянного давления в камере.

Сборка изделия своими руками

Накопитель самодельного устройства для отопления дома теплоизолируют и ставят в заранее подготовленный короб из фанеры. Расстояние между его стенками и накопительным баком заполняют пенопластом, минеральной ватой.

Некоторые умельцы используют для изоляции и обычные древесные опилки, чтобы снизить стоимость конструкции. Теперь можно приступать к сборке и установке коллектора. Сначала монтируете аванкамеру и накопитель в одну конструкцию.

В накопителе уровень воды должен быть по отношению к уровню в аванкамере ниже на 0,8–0,9 метров.

Затем подсоединяете к составляющим коллектора трубы: подпитки накопителя, подачи воды (горячей) к смесителям, подачи воды (холодной) к аванкамере и к смесителям, ввода холодной воды и две дренажные – для аванкамеры и для накопителя.

На участки с малым напором воды рекомендуется ставить трубные изделия сечением 1 дюйм, с высоким напором – 1/2 дюйма. Для подсоединения труб используются сгоны, тройники, переходники, фитинги.

Здесь нужно смотреть по ситуации, какие элементы приобретать, монтируя коллектор для отопления частного дома.

Как собрать воздушный коллектор для дома из водосточных труб?

Еще проще и дешевле изготовить устройство, которое вместо воды использует воздух в качестве теплоносителя. Воздушный коллектор для нагрева воды и отопления дома делают так:

  1. Собирают каркас из 3–4-сантиметровых досок. На заднюю его стенку дополнительно крепят лист фанеры (около 1 см толщиной) с высокими влагостойкими свойствами.
  2. Боковые поверхности собранного ящика изолируем пенополистиролом, а заднюю стенку утепляем минеральной ватой.
  3. Абсорбер, которым будет располагать наш воздушный коллектор, делают из тонкого алюминиевого листа, алюминиевых водосточных труб и хомутов для крепления этих элементов в одну систему. Лист укладывается в корпус, к нему прикрепляют трубы. Последние добавочно фиксируются перегородкой из древесины.
  4. Делаем с одной стороны корпуса вход и выход для труб.
  5. Окрашиваем в черный цвет наш воздушный коллектор.

На лицевую часть конструкции крепим лист сотового поликарбоната. Теперь можно устанавливать сделанный воздушный коллектор. Выполняется эта процедура на устойчивые опоры (устройство получится достаточно тяжелым) с южной стороны строения. Затем нужно просто подключить воздушный коллектор к вентиляционной системе здания.

Источник:

Солнечный коллектор своими руками

С каждым годом все более актуальной становиться проблема обеспечения своего загородного дома или дачи горячей водой. Особенно часто над этой проблемой размышляют хозяева коттеджей, в которых они проживают постоянно.

Ведь затраты на отопление и горячее водоснабжение занимают весомую долю в финансировании жизнеобеспечения жилища. И поиск возможностей сократить затраты на содержание дома – это нормальное и естественное желание любого человека.

Разумеется, самый реальный вариант снизить затраты в части отопления дома, изучить и начать изготовление своими руками устройства из области альтернативной энергетики.

Самодельный солнечный коллектор

О том что селективное устройство возобновляемой энергетики, примененное для отопления дома, имеет множество неоспоримых преимуществ известно давно, и о нем знает практически каждый взрослый человек.

Однако на практике не каждый из этих взрослых людей, имеющих желание стать более автономными в вопросах осуществления нагрева воды, решается выложить приличную сумму денег, чтобы приобрести селективное устройство для отопления дома фабричного изготовления. Конечно, из любой ситуации можно найти выход, а из этой тем более.

Солнечный коллектор для отопления дома можно сделать своими руками. Вы без проблем самостоятельно соберете плоский, воздушный солнечный коллектор. Такие самодельные устройства для нагрева воды с помощью солнечной энергии можно сделать из пивных банок и пластиковых бутылок, соединяя их при помощи шланга, подводя вакуумные трубки.

В результате вы получите абсорбер солнечной энергии для отопления дома путем нагрева воды, изготовление которого не потребует от вас практически никаких финансовых вложений (особенно при выборе варианта из жестяных банок).

Какие материалы потребуются вам, чтобы изготовить самодельный абсорбер

Обычному обывателю кажется, что самостоятельно изготовить абсорбер на солнечной энергии для отопления своего дома, проведя собственноручное изготовление каждой детали, составляющей устройство, невероятно сложная задача.

Однако, для того чтобы сделать подобный абсорбер, который будет выступать как устройство для нагрева воды в системе отопления дома, не нужно приобретение или поиск каких-то экзотических материалов. Вам не придется объездить уйму магазинов в поисках нужного шланга, разыскивая вакуумные трубки.

Не переживайте – это все домыслы лентяев и людей, боящихся взяться за дело. Главное, взвешенно подойти к решению проблемы, правильно все спланировать, нарисовать схему и подобрать необходимые материалы.

Коллектор из плоского радиатора

Самодельный плоский воздушный абсорбер с нанесенным селективным покрытием можно изготовить из обычных материалов и компонентов ПНД. Вакуумные трубы из поликарбоната и другие детали можно приобрести по небольшим ценам в любом хозяйственном магазине или супермаркете.

Схема для сборки довольно простая, в целях обучения можно просмотреть видео во всемирной сети (таких видео там более чем достаточно). На самом деле в глобальной сети можно найти много специализированной литературы по данной проблеме.

Если вы решили сделать задуманную работу на качественно высоком уровне, прочтение определенного количества литературы не станет лишним.

Основная трудность в процессе сборки состоит в том, как именно сделать змеевик (это трубка в извилистой форме, по которой циркулирует жидкость, осуществляя накопление энергии). Здесь есть несколько вариантов исходя из которых, будет составлена схема сборки.

Самый простой вариант собрать абсорбер на основе готового змеевика (можно попробовать поискать что ни будь, подходящее для этих целей, важно, чтобы он был вакуумный). Как вариант, может подойти система циркуляции, расположенная на задней стенке холодильника.

Второй вариант – это подобрать нужные вакуумные трубки, два-три шланга, пару пластиковых бутылок воды (из них собирается теплоноситель). Для большей уверенности еще раз просмотрите обучающее видео. Трубки для нагрева воды лучше использовать медные.

Далее вам потребуется заняться пайкой непосредственно змеевика.

Змеевик из пластиковой трубы

Второй очень значимый элемент, который входит в абсорбер – это верхняя сторона из прозрачного поликарбоната. В условиях промышленного производства покрытие из поликарбоната не используется, лицевое покрытие отливают из закаленного стеклянного сплава.

Однако в нашем случае рассматривается самодельный воздушный коллектор, тепловая схема и требуемая эффективность которого допускает использование поликарбоната, так как собирать устройство мы будем из подручных недорогих материалов.

Стоит отметить, что существуют схемы сборки где применяют материалы начиная от пивных банок, и заканчивая применением пластиковых бутылок.

Коллектор из поликарбоната

Подготовка к сборке абсорбера

Итак, в сборке своего устройства вам лучше прибегнуть к использованию сотового прозрачного поликарбоната. Применение такого вида поликарбоната позволит добиться максимальной эффективности нагрева от создаваемого устройства.

Сделать выбор в пользу этого поликарбоната стоит еще и потому, что он очень прочный.

Это немаловажно, учитывая возможные погодные катаклизмы, такие как крупный град, ураганный воздушный поток, который срывает ветки с деревьев – эти случайности надо учитывать, так как они способны повредить слабое покрытие.

Сотовая структура покрытия поможет вам сделать воздушный эффект парника, в результате создавая усиленный момент нагрева воды в трубках. Проще говоря, применив этот материал и в дополнение к нему селективное покрытие, вы значительно повысите эффективность изделия.

Сотовый поликарбонат

Для абсорбирующей панели вам будет нужен лист металла толщиной около 0,8 миллиметров (однако, лучше подойдет медный материал). В принципе сойдет и стальной лист.

На внешнюю поверхность надо будет нанести так называемое селективное покрытие (выкрасить матовой черной краской, краска должна быть стойкой к высоким температурам).

Если не соблюдать эти рекомендации (черное покрытие тоже имеется в виду), устройство не будет функционировать в правильном режиме.

Корпус устройства вы тоже сможете собрать самостоятельно, для этого вам надо использовать алюминиевые материалы или использовать менее долговечный, но легче поддающийся обработке деревянный материал.

Работая с деревом, вы потратите значительно меньше времени на создание обогревателя, а с фанерой работать еще легче.

Но все-таки лучше использовать раму из алюминия, ее долговечность, в сравнении с деревом, не идет ни в какое сравнение.

Определяемся с размерами коллектора

Теперь подведем итог, перечислим все необходимые для сборки эффективного самодельного коллектора материалы:

  • Трубки из меди размерами 18 миллиметров – из них вы будете формировать змеевик (такие же трубки используют при сборке отопительных систем);
  • черная матовая краска, стойкая к высоким температурам (при ее помощи вы нанесете селективное покрытие);
  • минеральная вата (теплоизоляция);
  • лист металла (медь, железо, сталь), толщина листа 0,8 миллиметров в толщину;
  • угловые переходы 18 х 18 миллиметров;
  • сантехнические переходы 18 мм х ¾ (нужны для того чтобы подключить к системе водоснабжения);
  • сотовый поликарбонат (лицевое покрытие коллектора);
  • лист алюминия и алюминиевые уголки для создания корпуса изделия, в случае отсутствия таковых – деревянные планки и лист фанеры для задней стены нагревателя;
  • все необходимые для проведения паяльных работ инструменты.
Читайте также:  Как сделать солнечную батарею своими руками

Сдвоенный коллектор

Важно заранее определиться с габаритами вашего коллектора исходя из его размеров, заранее рассчитайте требуемое количество трубок, переходов и других материалов (проще говоря, общую производительность монтируемого устройства). Вычислите количество воды, которое потребуется для обеспечения теплового обмена во всей системе.

Чтобы это сделать определитесь заранее, в каких целях будет использоваться коллектор – либо это только помывка посуды, либо для душа, либо для обеспечения покрытия всех хозяйственных нужд горячего водоснабжения в вашем доме.

Для подогрева воды в целях помывки посуды или принятия душа будет достаточно собрать коллектор размерами 200 х 100 сантиметров, расстояние между трубками в змеевике должно составить от 8 до 10 сантиметров.

Процесс сборки самодельного солнечного коллектора

Начало сборки этого изделия солнечной энергетики стартует с изготовления змеевика. Если вам удалось подобрать готовый змеевик, окончательная сборка займет намного меньше времени.

Подобранный змеевик стоит очень тщательно вымыть под струей воды (желательно горячей), чтобы изнутри вымыть все засоры и избавиться от остатков фреона. Если у вас не нашлось подходящих трубок, то нужное количество вы сможете приобрести в магазине. Но в этом случае придется изготовить сам змеевик.

Для его изготовления нарежьте трубки на требуемую длину. Далее, используя угловые переходы, проведите их спайку в форме конструкции змеевика. Дальше, чтобы коллектор можно было подключить к системе водоснабжения, на края змеевика напаивайте сантехнические переходы размерами ¾.

Существует несколько вариантов формы и конструкции змеевика, например, можно паять трубки в форме «лесенки» (если вы собрались реализовать такой вариант, тогда покупайте не угловые переходы, вам понадобятся тройники).

Сборка солнечного коллектора

Потом на заранее подготовленный лист металла вы наносите селективное покрытие черной матовой краской, сделать это желательно не меньше чем в пару слоев. Дождитесь, пока воздушный поток высушит краску, и начинайте пайку змеевика (с неокрашенной стороны).

Вся конструкция змеевика должна быть припаяна по всей длине трубок, сделав это, вы гарантируете максимально эффективный теплообмен и как следствие – максимальную передачу тепла в систему водоснабжения.

Если сделаете все правильно, собранный вами солнечный коллектор заработает так, как и было задумано.

Ответственная стадия сборки

Заключительным этапом вам надо собрать корпус, который скрепит все компоненты устройства в единую конструкцию. Используя лист фанеры и деревянные бруски, нужно сбить прочный ящик. В используемых деревянных брусках заранее прорежьте пазы, в них вы потом вставите экран из поликарбоната (глубина паза около 0,5 см).

Выходные отверстия для трубок можно сделать уже после того, как установите все основные компоненты. Далее, в уже собранный деревянный ящик, чтобы создать воздушный карман, вы укладываете изоляцию из минваты. Поверх минваты крепите панель со змеевиком. Края ваты подворачиваете так, чтобы змеевик не дотрагивался до стенок ящика.

Нагревательная панель и панель из поликарбоната также должны иметь между собой расстояние и не прикасаться друг к другу. Завершающая стадия состоит в обработке корпуса специальным раствором с водоотталкивающей способностью и покрывается эмалью (за исключением лицевой части).

Вот и все, солнечный коллектор своими руками готов. Для того чтобы его активировать, поставьте его на опорную конструкцию, развернув лицевой частью к солнцу таким образом, чтобы лучи падали на лицевую часть под максимально прямым углом. На крыше устанавливаете бак для накопления воды, он будет служить резервуаром.

К верхней части бака проведите шланг, соединенный с верхней трубкой коллектора, к нижней части от нижней трубки. Подключив воду по такой схеме, вы обеспечите работу в режиме естественной циркуляции. Согласно законам физики, горячая вода будет подыматься кверху в направлении бака, а вытесняемая холодная будет попадать в коллектор для нагрева в змеевике.

Не забудьте, что к баку необходимо присоединить шланг и вентиль для забора воды из бака, а также его наполнения новой.

Итоги

В заключение хотелось бы отметить, что возможная конструкция коллектора неограничена использованием медного змеевика. Существует много разных способов, например, можно собрать вполне эффективный, работающий коллектор с использованием в качестве абсорбирующих элементов пивных банок, других бутылок из жести.

Вариантов много. Для этого только стоит изучить вопрос, собрать необходимое количество пивных банок или жестяных бутылок. Далее, собрать их в единую конструкцию. Главное, что даже если вы решили собрать коллектор из пивных банок или бутылок, помните, что все солнечные коллекторы работают по одному и тому же принципу.

Качественно проведите спайку стыков соединения патрубков и банок, создайте в конструкции должные условия вакуума и все у вас получиться. Смело беритесь за дело. В итоге вы получите не только совершенно бесплатный и автономный источник горячей воды.

Вы также получите огромное психологическое удовлетворение от осознания того, что вы приложили руку к увеличению доли использования возобновляемой энергетики в современном мире глобализации.

Создав прибор, работающий на солнечном излучении, вы станете более независимыми от центральных систем снабжения как электричеством, так и газом. Вы сами обеспечите себя горячей водой в хозяйственных нуждах. Удачи.

Источник:

Простой термосифонный солнечный коллектор без насоса своими руками

Описанная ниже конструкция — термосифонный солнечный коллектор, основан на медной трубе и алюминиевом оребрении. Медное оребрение имеет немного более эффективную теплоотдачу, но стоимость медных листов увеличивает цену коллектора в 3-4 раза.

Пайка ребер к трубам -тоже непростая задача. Производительность способа переноса тепла от алюминиевых пластин медным трубам заключается в обеспечении хорошего теплового контакта. Как это реализуется — читайте ниже.

Какова цель самодельной термосифонной системы:

  • Производительность, близкая к коммерческим коллекторам.
  • Низкая стоимость (до 1/4 от цены за покупную систему).
  • Длительный срок службы.
  • Легкость исполнения своими руками из доступных каждому материалов.

Солнце нагревает воду, снижает ее плотность и вода поднимается в резервуар. Нагретая вода выходит из коллектора, ее постепенно замещает холодная, подающаяся естественной циркуляцией из резервуара в коллектор через нижнее соединение.

Насос в данной конструкции не нужен. Контроль осуществляется автоматически, так как движение воды останавливается, как только коллектор остывает ниже температуры накопительного бака. Принцип термосифона подробно рассмотрен в этой статье.

Этот вариант термосифонного коллектора не предусматривает использование при минусовых температурах, поэтому при первых заморозках систему необходимо сливать.

В качестве примера взяты два прототипа коллектора одинаковой конфигурации, поэтому фото могут отличаться в некоторых несущественных деталях.

Термосифонная система своими руками

Из чего собран термосифонный солнечный коллектор:

  • Гофрированный поликарбонатный лист SunTuf.
  • Рама из пиломатериалов.
  • Фанера или ОСБ для основы.
  • Жесткая теплоизоляция (теплоизолятор может быть любым, от этого будут зависеть «слои» подложки — с жесткой изоляцией в данной конструкцией заднюю часть коллектора больше ничем не закрывали).
  • Алюминий листовой для абсорбера 0,5 мм.
  • Трубы медные.
  • Фитинги медные.
  • Термостойкий силикон.
  • Винты, краска, волнистые рейки для крепления поликарбоната (их можно изготовить из досок лобзиком).

Данная конструкция термосифонного солнечного коллектора основывается на алюминиевом абсорбере. Ребра увеличивают площадь передачи тепла от пластины к трубе и имеют паз по форме этой трубы.

2 способа сделать абсорбер медной трубы из алюминия

Использование листового алюминия в связке с медными трубами очень часто используется канадцами, американцами, австралийцами. У нас же это непопулярное решение (насколько мне известно). Кто-то занимается оксидированием меди, кто-то просто красит трубы.

Приспособление для гибки листового алюминия изготавливается из фанеры 19 мм толщиной и длиной около метра, в которой есть канавка квадратной формы 16Х16 мм. Для формирования углубления под трубу взят стальной стержень диаметром 16 мм (труба в большинстве коллекторов берется полдюймовая).

Приспособление для гибки алюминия для абсорберов солнечного коллектора

«Гнездо» для формовки алюминия сделано из двух брусков фанеры 16 мм, так приклеенных и привинченных к основе, чтобы образовать квадратную канавку. Листовой алюминий некоторых брендов уже имеет небольшой сгиб ровно по середине листа, а если его нет — нужно быть более внимательным при гибке.

Метод прессования молотком кажется неубедительным на первый взгляд, но на практике прекрасно работает. Процесс гибки алюминия с помощью прута и кувалды понятен из фото: положите металл на фанеру точно над пазом, установите стержень, придерживайте его и без сверхусилий бейте вертикально поставленным молотком по конструкции. Такой способ не дает ребрам загибаться вверх.

  • Пресс для листового алюминия
  • Как только вы «набьете руку», гибка одного абсорбера будет занимать не более 20 секунд.
  • Не забывайте проверять плотность прилегания абсорбера к трубе.

Фанерку для гибки всегда можно усовершенствовать держателями для стержня, ограничителем по одной стороне для того, чтобы лист алюминия не скользил по фанере.

Не стоит делать слишком длинные ребра, так как медь и алюминий расширяются с разной скоростью и короткие ребра (60-70 см) справятся с этим лучше. Ребра необходимо выровнять, опрессовать.

Существует способ полностью обернуть трубу алюминием. Пошаговые фото этого процесса смотрите ниже.

Этот метод позволяет добиться полного контакта абсорбера с медной трубой, что улучшает производительность коллектора, но и усложняет процесс создания абсорбера.

Конечно, описанные здесь способы не предел фантазии. Во время подготовки статьи мне встречались и высокотехнологичные для домашнего использования решения, такие как эти:

Как выровнять алюминиевые ребра абсорбера

Вероятно, можно придумать множество вариантов, как выровнять абсорбер после гибки. В данном случае автор конструкции соорудил пресс, который вы видите на фото. Ему нужно было обработать много алюминия для теплого пола и этот пресс работал быстрее и аккуратнее способа с молотком.

Пресс продавливает алюминий закрепленным стальным стержнем. Эта конструкция вполне сносно работает благодаря длинным рычагам, увеличивающим массу тела.

Даже если оребрение идеально совпадает с формой трубы, силикон обязательно нужен для оптимизации сцепления между металлами.

Как оптимизировать сцепление между металлами

В канавку наносится тонкий слой термостойкого силикона. Силикон обладает теплопроводностью в 10 раз большей, чем воздух, поэтому даже при очень хорошем сцеплении он не помешает. Помимо теплопроводности, силикон уменьшает риск гальванической коррозии путем герметизации от возможной влаги. Более подробно про улучшение сцепления между абсорбером я расскажу в следующей статье.

Укладка дополнительной полосы алюминия под трубу

В некоторых прототипах коллекторов ставят еще одну пластину алюминия под каждой медной трубой. Это дополнительная зона контакта между медью и абсорбером, помогающая избежать потери тепла на внешнем крае ребра. Про эффективность алюминиевого абсорбера готовлю отдельный материал.

Изготовление труб для коллектора

Размер коллектора должен быть таким, чтобы как можно меньше осталось отходов от резки медной трубы :). На фото размер фанеры 238Х117 см (перевожу дюймы в сантиметры, поэтому цифры выглядят немного странно). Параметры основы напрямую зависят от размера материала, который накроет коллектор (стекло или поликарбонат).

Так будет выглядеть медная решетка. Вода будет поступать в нижнем правом углу, проходить весь путь и выходить в верхнем левом.

Читайте также:  Как сделать солнечный водонагреватель своими руками

Вырезаем трубы нужной длины. После резки необходимо зачистить места среза, особенно с внутренней стороны. На специальном инструменте для резки труб предусмотрено лезвие для этого. На фото очистка переходников и труб от остатков резки.

Примеряем алюминиевые ребра, подгоняем до идеального соприкосновения между отдельными деталями абсорбера. Режем отрезки трубы под соединения. Напоминаю, все замеры должны быть идеальными — расстояние между трубами должно равняться ширине ребер абсорберов.

Первый стояк получает Т-образный фитинг (на прием воды), а последний стояк получает коленчатое соединение. На другом конце коллектора колено идет к первой трубе, а тройник к последней (выход горячей воды). Такая обвязка обеспечивает примерно одинаковую циркуляцию.

Припаиваем все детали решетки.

После того, как решетка остынет, ее нужно будет тщательно отмыть от флюса жидкостью для мытья посуды.

Спаянные трубы должны пройти испытание на герметичность. На фото показан простейший способ, который прекрасно работает. Необходимо закрыть выпускное отверстие в нижнем конце и медленно наполнить сетку водой. Если у вас есть возможность использовать небольшое давление, то это вообще отлично.

Как сделать раму для солнечного коллектора

Рама должна иметь такой размер, чтобы в нее стала фанера с абсорбером. Углы скреплены шурупами и клеем. Рама в данном случае была загрунтована и покрашена эпоксидной краской.

Установка трубной сетки

Прижимаем трубы к фанере, добавляем фитинги к подаче и обратке. В данной конструкции выходы предусмотрены в заднюю часть коллектора. Можно припаять впускной и выпускной клапан сразу.

Прокладываем полосы алюминия под трубы. Выше я уже обращал внимание, зачем это делается. Полоса силикона заполняет пустоты между трубой и пластиной. Далее наносим силикон на всю пластину.

Силикон остается гибким при тех температурах, в которых придется работать коллектору. Это очень хороший способ сохранения и передачи тепла от абсорбера к решетке. В продаже есть термостойкие силиконы с наполнителями, увеличивающими теплопроводность.

Установка абсорберов

Подгонка оребрения

В канавку ребра наносим полоской герметик. Слой должен быть очень тонким. Плотно прибиваем ребра к фанере с помощью степлера скобами из нержавеющей стали. В одном из прототипов используются шурупы.

Установка алюминиевого абсорбераЗакрепление оребрения степлером

Покраска абсорбера

На абсорбер необходимо нанести селективное покрытие. В гаражных условиях очень удобно воспользоваться краской для каминов и барбекю, в продаже есть и селективные краски для коллекторов.

Нужно очистить поверхность алюминия и меди от герметика и других загрязнений с помощью ацетона или другого подходящего растворителя. Абсорбер должен быть абсолютно сухим перед покраской.

Устанавливаем термосифонный солнечный коллектор в рамку.

Установка изоляции на солнечный коллектор

В данном случае используется жесткая изоляционная плита. Полистирол брать нежелательно из-за высоких температур. На фото изоляция приклеивается полиуретановой пеной. На плиту обязательно нужно установить груз, так как пена будет пытаться расшириться.

Остекление солнечного коллектора

Вовсе не обязательно использовать поликарбонат, как в данном случае. Но именно гофрированный поликарбонат наиболее популярен в самоделках у американцев. Он обеспечивает высокую теплопередачу, прочный и гибкий, фильтрует ультрафиолет (так утверждает автор прототипа, но встречавшийся мне ПК был УФ-пропускающим). Для коллектора это хорошие показатели.

  1. Подготовка рамы солнечного коллектора к остеклению
  2. Листы поликарбоната в этой конфигурации соединены путем наложения гофра на гофр и склеены прозрачным силиконом.
  3. Устанавливаем опоры для остекления. Здесь используется тонкостенная оцинкованная металлическая трубка кабелепровод.
  4. Необходимо просверлить отверстие в раме, как на фото. Проклеить паз. К слову, на фотографиях один из вариантов солнечного коллектора на трубах из сшитого полиэтилена — все делается точно так-же, как и с медью.

На ребро рамы нужно наложить полоску древесины. Высота полоски должна соответствовать высоте «волны» поликарбоната. Уложите лист так, чтобы ребра поликарбоната можно было герметично прикрутить к раме. ПК вверху и внизу устанавливается на специальную волнистую полосу, используйте силикон для герметизации швов.

Закрепляем вертикальный край гофры винтами с шайбами. Нельзя вкручивать винты «под завязку», вся конструкция под действием температуры будет расширяться и могут пойти трещины.

Над листом поликарбоната необходимо установить полосы древесины, которые будут равномерно прижимать его в верхней и нижней части. На фото хорошо видно, о чем я.

Установка термосифонного солнечного коллектора

На фото видны внешние сантехнические детали. Резервуар находится прямо за стеной над коллектором. В холодном климате трубы необходимо теплоизолировать. Гофрированный подвод предусмотрен на случай каких-либо передвижений коллектора. Сливной клапан для сброса воды на зиму.

Бак для коллектора и сантехнические работы

В качестве резервуара для воды используется старый газовый бак. Устанавливать бак необходимо выше коллектора, чтобы работала естественная циркуляция.

Если открыть запорные краны, горячая вода будет поступать из резервуара с холодной стороны электрического бака. Холодная вода поступает в коллектор из старого слива газового бака, горячая вода из коллектора выходит в старый выпускной клапан.

Выпускной клапан установлен в резервуар и коллектор. Термодатчик так же установлен на бак и на солнечную панель.

На фото бак для сбора горячей воды из коллектора. Солнечная панель находится за стеной, на выходе двух труб.

На фотографии новый электрический нагреватель для резервного подогрева. Горячая вода из коллектора поступает во входное отверстие для холодной воды в этом баке.

Существуют разные варианты резервуаров для солнечного коллектора, например такой.

Замеры температуры

При температуре около 60 градусов вода поступает в резервуар. Бак прекрасно держит температуру всю ночь, электрический нагреватель не включали. Воду из коллектора используют на стирку, душ и мытье посуды. За бортом температура воздуха была не выше 30 градусов (май 2010 года). Испытания производительности в деталях в следующей статье.

Источник:

Используем солнечную энергию по назначению: как сделать коллектор своими руками

Солнечный коллектор — это устройство, предназначенное для поглощения солнечной энергии и преобразования её в тепловую с целью дальнейшей её передаче теплоносителю.

Классическое устройство представляет собой чёрную металлическую пластину, помещённую в стеклянный или пластмассовый корпус, поверхность которой поглощает радиацию. Их существует несколько видов и предназначение может быть разное.

Давайте рассмотрим подробнее принцип работы этого устройства, а также поэтапное изготовление этого объекта своими руками.

Какие существуют

В зависимости от температуры, которую могут достигать пластины, коллекторы бывают:

Интегрированные коллекторы делятся на:

  • накопительные интегрированные;
  • плоские;
  • жидкостные;
  • воздушные.

Накопительный интегрированный или по-другому термосифонный коллектор. Он может не только нагревать воду, но и какое-то время поддерживать некоторое время нужную температуру. В нем нет насосов, поэтому он гораздо экономичнее остальных вариантов.

Устройство-накопитель представляет собой конструкцию из одного или нескольких баков, заполненный водой и помещённых в теплоизоляционный ящик. Сверху на баках лежит стеклянная крышка, которая проходит через стекло и нагревает воду. Это недорогой, лёгкий в обслуживании и простой в эксплуатации вариант.

Однако зимой его применение весьма затруднительно.

Плоский коллектор внешне напоминает обычный плоский металлический ящик, внутри которого помещена чёрная пластина, поглощающая солнечный свет. Стеклянная крышка ящика усиливает его, стекло имеет низкое содержание железа, такие образом способствуя поглощению всех лучей.

Сам ящик термоизолирован, а чёрная пластина тепловоспринимающая, благодаря чему и выделяется тепло. Однако КПД пластины всего 10%, поэтому она дополнительно покрывается слоем аморфного полупроводника.

Плоские коллекторы используются для подогрева воды в бассейнах, отопления помещений и иных бутовых нужд.

В жидкостных накопителях основным теплоносителем становится жидкость.Они бывают остеклёнными и неостеклёнными, с замкнутой и разомкнутой системой теплообмена.

Воздушные коллекторы гораздо дешевле своих водных собратьев. Они не замерзают зимой, не подтекают. Их используют для сушки сельскохозяйственных продуктов.

Существует еще один вид — концентраторы, они отличаются концентрацией солнечных лучей. Это происходит благодаря зеркальной поверхности, которая направляет свет на поглотители. Главный их недостаток — это невозможность работы в пасмурные дни, поэтому их используют в странах с жарким климатом.

Солнечные печи и дистилляторы. Дистилляторы работают на принципе испарения воды, тем самым не только дают теплоэнергию, но и очищают воду. Печи также используют как для обогрева, так и для стерилизации воды.

В конструкции накопительного коллектора может быть несколько баковПлоские коллекторы чаще используют для отопления помещений и подогрева воды в бассейнахВ жидкостном коллекторе носитель тепла водаВоздушные коллекторы можно также применять для сушки фруктов

Схема работы

Коллектор состоит из двух главных частей: светоулавливателя и теплообменного аккумулятора, который преобразует энергию радиации в тепловую энергию и передаёт её теплоносителю. Накопители могут быть вакуумными, трубными и плоскими.

В первых конструкция похожа на термос: одна труба вставлена в другую, а между ними имеется вакуум, создающий идеальную теплоизоляцию.

Благодаря цилиндрической форме труб, солнечные лучи попадают на них перпендикулярно и передают максимум энергии.

Солнечный коллектор состоит из двух главных частей: светоулавливателя и теплообменного аккумулятора

Теплоносителем в таких конструкциях является обыкновенная вода. Она может не только отапливать помещение, но и служить для бытовых нужд.

При этом нет выделений углекислого газа в атмосферу, что весьма актуально в наши дни. К тому же не требуется никаких затрат на топливо, а эффективность коллектора составляет 80%.

На большей части России в период с марта по октябрь в среднем в сутки солнцем вырабатывается 4−5 кВтч/м2, что позволяет небольшим устройством размером 2м2 нагревать ежедневно до 100 л воды.

Для всесезонного использования коллектор должен иметь обширную поверхность, два контура с антифризом и дополнительные теплообменники. Таким образом, благодаря грамотно использованной энергии можно получать бесплатное тепло 7 месяцев в году, независимо от того ясно на улице или нет.

Тепловая энергия для вашего дома: как сделать коллектор своими руками?

Для изготовления устройства в ход могут идти листы поликарбоната, медные или полипропиленовые трубы.

Самой универсальной конструкцией является разработка болгарского инженера Станислава Станилова. Основной принцип действия этого коллектора — это использование парникового эффекта.

Накопитель представляет собой помещённый в теплоизолированную деревянную коробку трубчатый радиатор, сваренный их стальных труб.

Для подведения и отведения воды используются водопроводные трубы диаметром 1 или ¾ дюйма.

Коробка теплоизолируется со всех сторон при помощи пенопласта, пенополистирола, минеральной или эковатой. Особенно тщательно изолируется дно, куда поверх изоляции кладётся лист оцинкованного кровельного железа, на который ставится сам радиатор. Он закрепляется в коробке стальными хомутами.

Металлический лист и радиатор красятся чёрной матовой краской, а коробка со всех сторон, кроме стеклянной крышки, покрывается белой краской. Покровное стекло, через которое будет проходить к радиатору солнечный свет, хорошо герметизируется.

Накопителем тепла может служить металлическая бочка, помещённая в дощатой или фанерной коробке, в полости которой заполняется эковатой, сухими опилками, керамзитом, песком.

Основной принцип действия такого коллектора — использование парникового эффекта

Изготовление: пошаговые действия

Конструкция солнечного коллектора проста

  • Из досок сколачивается короб, днище которого усиливается брусом.
  • На дно укладывается теплоизоляция (пенопласт, пенополистирол, минеральная вата), поверх которой кладётся лист железа или жести.
  • Сверху ставится радиатор и закрепляется хомутами из стальной полосы.
  • Все соединения герметизируются, стыки и щели замазываются.
  • Трубы радиатора и металлический лист выкрашиваются в чёрный цвет.
  • Короб и бак для воды выкрашивается в серебристый цвет. Бак для воды помещается в теплоизолированный короб или бочку (между баком и стенами короба насыпается теплоизоляционный материал).
  • Для создания постоянного небольшого давления приобретается аквакамера с поплавковым клапаном, как в бочке унитаза. Её можно приобрести в магазине сантехники.
  • На чердаке дома, под крышей размещается аквакамера и накопитель воды (бак). Аквакамера помещена выше бака как минимум на 0,8 м.
  • Коллектор размещается на крыше южной стороны дома под углом 450 к горизонту.

Далее идёт соединение всей системы между собой трубами: полудюймовыми трубами монтируется высоконапорная часть системы от аквакамеры до водопроводного ввода.  Дюймовыми трубами монтируются низконапорные части.

Минимальное количество труб — 12 штук, но, в зависимости от расстояний между частями коллектора, понадобится 18−15 труб, но не менее 12.

  1. Чтобы избежать воздушных пробок, система заполняется водой с нижней части радиатора. Как только вся система наполнится водой, из дренажной трубки аквакамеры польётся вода.
  2. Открываем вентиль в трубе для заполнения бака.
  3. Вода начинает нагреваться сразу же. Тёплая вода поднимается вверх, вытесняя холодную, и та автоматически поступает в радиатор.

Как только часть воды будет использована, поплавковый клапан в аквакамере сработает, и холодная вода снова поступит в нижнюю часть системы. Смешивания воды при этом не происходит. В ночное время желательно перекрывать доступ воды в бак, чтобы не возникли теплопотери.

Источник:

akkummaster.com

Солнечный коллектор из алюминиевых банок, что это и как его сделать

Сразу о главном! Такая конструкция, в солнечный день, даже при температуре на улице -20 °C  способна прогревать воздушный поток до +50 °C. Как работает такой солнечный коллектор и как его сделать своими руками читайте далее.

Об эффективном использовании энергии солнца для снижения затрат на отопление жилых зданий говорилось много. Однако, широкое распространение, предлагаемых в продаже водяных солнечных коллекторов и солнечных батарей, сдерживается высокими ценами на оборудование промышленного изготовления. Большинство самодельных конструкций либо ненадежны, либо очень сложны и дороги. Но если под солнечными лучами нагревать не жидкий теплоноситель, а обыкновенный воздух, то конструкцию можно существенно упростить и снизить ее стоимость до минимальной.

Принцип работы и область применения

Конструктивно солнечный коллектор из металлических банок представляет собой деревянный каркас прямоугольной формы, с изолированной задней стенкой и прозрачной верхней крышкой из поликарбоната. Внутри него установлено несколько тонкостенных алюминиевых труб, окрашенных в черный матовый цвет, по которым прокачивается воздух.

Воздух для подачи в коллектор берется из нижней части отапливаемых помещений и далее поднимается вверх по разогретым трубкам. Создается разница давлений холодного и горячего воздуха что и создает принудительную тягу. Этой тяги достаточно что бы горячий воздушный поток поступал по вентиляционному каналу в помещение замещая собой холодный.

Вариант с принудительной вентиляцией с помощью электро турбины

В этом варианте конструкция может использоваться в приточной системе механической вентиляции.

Вентилятор включается от термостата в том случаи когда датчик температуры сигнализирует ему что воздух достаточно нагрет. Если температура воздуха ниже установленной, система не работает, тем самым предотвращается циркуляция холодного теплоносителя.

При совместной работе с рекуператором она обеспечит нормальную температуру свежего приточного воздуха без включения системного калорифера и сэкономит значительное количество электроэнергии.

Достоинства и недостатки

Главное достоинство солнечного коллектора из металлических пивных банок заключается в невысокой стоимости используемых материалов и возможности самостоятельного изготовления, даже человеку, не обладающему большими навыками слесарных и монтажных работ. Эффективность этого устройства такова, что позволяет отключать традиционную систему отопления при температуре наружного воздуха выше -3 °C, а это не менее трети всего отопительного сезона средней полосы. Основной плюс, это экономия энергоресурсов на отопление. Однако есть и недостатки.

ПлюсыМинусы
Низкая ценаНет промышленного производства
Отсутствие необходимости обслуживанияНеобходимость специально системы воздушной вентиляции в доме
Возможность изготовить самостоятельноНеобходимы прямые солнечные лучи
Как это работает, реальный пример использования

Использовать эту конструкцию можно даже в квартире

Самостоятельное изготовление коллектора

Для этого потребуется такой утилизационный материал, как алюминиевые банки из-под пива, колы или других напитков, четыре доски, фанера, поликарбонатный лист или стекло, немного утеплителя и небольшие усилия при изготовлении. В результате вы сможете получить альтернативный источник тепла для обогрева дома и снизить расходы на приобретение традиционного топлива.

Пивные алюминиевые банки подходят идеально. Сам материал не подвержен коррозии (а это важно так как на стенках может образовываться конденсат) и отлично проводит тепло. Внутренняя поверхность глянцевая и гладкая, что позволяет отражать тепло внутрь трубки и не выпускать его наружу.

Для работы вам потребуется:

  • стандартные металлические банки от пива или других напитков;
  • лист фанеры толщиной 8-10 мм;
  • 6 досок толщиной 30 мм;
  • пенопласт или минераловатные маты толщиной 30-50 мм;
  • лист ячеистого поликарбоната;
  • матовая черная краска и клей для соединения металлических поверхностей;
  • вентилятор и вентиляционные трубы.

Размер листов фанеры, поликарбоната и досок зависит от запланированной площади коллектора. Пивная металлическая банка имеет длину 150 мм и основной диаметр 65 мм. Поэтому внутренний размер конструкции из 15 труб, каждая из которых составлена из 12 банок будет равен:

  • длина заполнения склеенными трубами 150 х 12 = 1800 мм;
  • ширина 65 х 15 = 975 мм (можно округлить до 980 мм);
  • размер приемного и выпускного отсеков 975 х 100 мм;
  • ширина досок зависит от толщины теплоизоляционного материала с добавлением диаметра банок – 95 или 115 мм.

Итак, для такого коллектора потребуется лист фанеры и поликарбоната размером 2120 х 1140 мм. Две доски толщиной 30 мм, шириной 95 или 115 мм, длиной 2120 мм и 4 – 1140 мм.

Изготовление воздушных труб

На сборку воздушных труб,  в нашем случаи, потребуется 15 х 12 = 180 металлических банок, подойдут пивные из под Coca-Cola или любых других напитков. Для их подготовки необходимо максимально увеличить размер сливного отверстия и пробить большие отверстия в дне. Лучшим вариантом будет полное удаление вогнутого дна и верхней крышки. Это легко делается на точильном станке или пробить чем ни будь острым большие отверстия.

После механической обработки банки следует хорошо промыть, чтобы убрать пищевые остатки и исключить появление неприятного запаха.

Изготовление единой трубы производится при помощи герметика, соединяя донышко банки с горловиной. Здесь нужно выбрать термостойкий вариант, поскольку температура воздуха в трубках может составлять 90 оС. Герметик для каминов не подойдет так как он хрупкий и может, со временем, рассыпаться. Но, нам важно сохранить герметичность трубы, поэтому необходим эластичный клей.Подойдет что то на силиконовой основе, обязательно берите с запасом температуры хотя бы до 200 оС.

На каждую трубу потребуется 12 банок. Всего изготавливается 15 воздуховодов. Для упрощения работы можно изготовить направляющее приспособление из двух досок, сбиты под прямым углом по длине. Поставить эту конструкцию в максимально вертикальном положении и чем то пригрузить сверху банки что бы улучшить качество склейки.

Сборка корпуса, утепление и установка труб

Каркас можно изготовить любого размера, в зависимости от места где вы его будете монтировать. Однако, чем больше длинна самих труб, которые вы в него вмонтируете, тем дольше воздух будет по ним идти в выходу и тем выше будет его температура.

Из 4-х досок и фанерного или ОСБ листа собирается деревянный короб. Его дно нужно закрыть пенопластом или минераловатным матом. Фиксация утеплителя осуществляется при помощи клея.

Для установки банок внутри корпуса необходимо изготовить из досок два держателя. Для этого в них кольцевым сверлом высверливают по 15 отверстий диаметром немного меньше основного размера банки. В этом случае горловина и дно вставляются в отверстия и воздуховоды надежно фиксируются.

Установка труб из банок

Для увеличения эффективности поглощения солнечной энергии поверхность банок следует выкрасить в черный матовый цвет (здесь можно использовать автомобильный грунт, он отлично держится на материале и имеем матовую структуру поверхности. Деревянный корпус для увеличения долговечности конструкции так же рекомендуется покрасить. Верх коллектора закрывается листом поликарбоната или стекла. Второй вариант требует осторожности при работе, однако его поверхность не потускнеет со временем и стоит намного дешевлею

В задней или боковой стенке короба высверливаются два отверстия для подключения подающих воздуховодов. Их поверхность должна быть покрыта слоем тепловой изоляции для снижения потерь тепла. В нижнюю часть коллектора подается уже охлажденный воздух из помещения, а через верхний отсек нагретый.

Изготовленный обогреватель может быть установлен на южной стене здания или на скате крыши. Тепловая производительность такого устройства зависит от его размеров и в каждом отдельном случае может быть подобрана индивидуально.

Подробная видео инструкция как его сделать

Отзыв о использовании установки от одного из наших читателей

vremya-stroiki.net


Смотрите также

 
ООО "ЭлитСтрой" - производство и продажа пеноблоков
Карта сайта.XML.